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2 Welcome from OC and SC Chairs

Welcome to Padova and to HYP2012 - the fourteenth International Conference on Hyperbolic Problems!

This bi-annual series of international conferences, devoted to theory, numerics and applications of hyperbolic
problems, has now become one of the highest quality and most successful conference series in Applied Mathe-
matics. Its main objective is to bring together researchers, practitioners and students with interest in all aspects
of hyperbolic differential equations and related models. This year we look forward to hosting a record number
of over 350 participants, led by a world renowned list of plenary and invited speakers.

This book collects thirtyone abstracts of plenary and invited lectures, two hundred and sixteen abstracts of
talks, to be delivered in nine parallel sessions, and more than thirty abstracts of contributed posters. These
cover a broad spectrum of topics, with particular highlights on:

! Singular limits (zero-viscosity, relaxation, incompressible limit, semi-classical limits) and dispersive equations
in mathematical physics.
! Nonlinear wave patterns in several space dimensions.
! Particle/molecular dynamics (kinetic methods, passage from microscopic to macroscopic, numerical issues in
transitional regimes, magneto-hydrodynamics).
! Theory and numerics of multiphases and interfaces (boundary layers, phase boundaries, multiphase wave
propagation).
! Transport in complex environments (homogenization, semiclassical limits, scattering in random media, porous
media, biological applications, network and traffic flows).
! Control problems for Hyperbolic PDEs (controllability/stabilizability properties, optimal control) and
Hamilton-Jacobi related problems.
! General relativity and Geometric PDEs.

We hope that the conference will provide a forum to stimulate and exchange new ideas from different disciplines,
and to formulate new models and problems that will have impact in engineering, in physical and biological
sciences, as well as industrial applications.

We would like to take this opportunity to thank the University of Padova and Magnifico Rettore Prof. Giuseppe
Zaccaria. Moreover, we would like to express a special thank to Prorettore Vicario Prof. Francesco Gnesotto, for
all his invaluable support and helps in organizing this event. We thank as well the Director of the Department
of Mathematics Prof. Bruno Viscolani and the Department of Mathematics staff, particularly Alessandro Lanza
for designing the logo of the conference. We would like also to thank the Major of Padova Dott. Flavio Zanonato
and the member of the city council Prof. Gianni Di Masi for their help in the organization of the social events of
the conference, particularly the Conference Banquet at Palazzo della Ragione. Finally, we would like to thank
the staff of PadovaMeeting for their dedication and professional work in helping to organize every logistic aspect
of this conference.

We look forward to your participation in a stimulating and productive environment of the HYP2012 conference.

Fabio Ancona, Alberto Bressan, Pierangelo Marcati, Andrea Marson

History. Hyperbolic Problems: Theory, Numerics and Applications is a bi-annual series of conferences which
bring together researchers and students with interests in theoretical and computational aspects of hyperbolic
PDEs and of related time-dependent models in the applied sciences. The previous editions were hosted in St-
Etienne, France (1986), Aachen, Germany (1988), Uppsala, Sweden (1990), Taormina, Italy (1992), Stony
Brook, NY USA (1994), Hong Kong (1996), Zürich, Switzerland (1998), Magdeburg, Germany (2000),
Pasadena, CA USA (2002), Osaka, Japan (2004), Lyon, France (2006), College Park, MA USA (2008) and
Beijing, China (2010).

Last update of this online version: June 23, 2012. Possible changes will also be included in the program available on the

website of the conference at the address: http://www.hyp2012.eu/program and posted during the conference.

HYP2012





HYP2012 — Book of Abstracts 15

3 Abstracts of plenary lectures

Monday, Aula Magna Galilei, Palazzo Bo, 9.30–10.15

Non-standard solutions of isentropic Euler with Riemann data

Camillo De Lellis
Institut für Mathematik, Universität Zürich

camillo.delellis@math.uzh.ch

We consider the isentropic compressible Euler equations of gas dynamics in two space dimensions and in the
Eulerian formulation. The gas is described by the state vector (ρ, v), where ρ is the density and v the velocity.
The balance laws for mass and linear momentum give therefore the following system of 3 scalar equations






∂tρ+ divx(ρv) = 0

∂t(ρv) + divx(ρv ⊗ v) +∇[p(ρ)] = 0 .
(1)

The pressure p is required to be a smooth function with p′ > 0. A largely studied class of examples is given by
the pressure law p(ρ) = κργ where γ > 1. However, the results presented in this talk are, for the moment, not
valid for such laws.

We will focus our attention on the Cauchy problem for (1), i.e. on solutions on R2 × [0,∞[ satisfying the
initial conditions

(ρ, v)(x, 0) = (ρ0(x), v0(x)) . (2)

Moreover, we will consider Riemann data having the following very specific form

ρ0(x) =

{
ρ+ if x2 > 0
ρ− if x2 < 0

(3)

v0(x) =

{
v+ if x2 > 0
v− if x2 < 0 .

(4)

As it is well known solutions to (1) are in general not unique, unless the system is complemented with
suitable admissibility criteria. Perhaps the most popular one is the so-called entropy condition, which in the
case at hand requires the following inequality for the energy density and the energy flux:

∂t

(
ρε(ρ) + ρ

|v|2

2

)
+ divx

[(
ρερ+ ρ

|v|2

2
+ p(ρ)

)
v

]
≤ 0 , (5)

where the internal energy density ε is linked to the pressure p by the identity p(r) = r2ε′(r).
Since the pioneering work of Riemann it is known that, if we restrict our attention to the 1-dimensional

Riemann problem, i.e. to pairs (ρ, v) which are admissible solutions of (1)-(2)-(3)-(4) and depend only on x2
t ,

then (with some more assumptions of technical natural) there is a unique solution (see for instance [7, Section
4.7]). Surprisingly the situation is radically different if we drop the requirement that (ρ, v) depends only on x2

t .

Theorem 1. There are a smooth pressure law p with p′ > 0 and constants ρ± and v± for which there exist
infinitely many admissible bounded solutions (ρ, v) of (1), (2), (3) - (4) with inf ρ > 0.

The proof builds upon the methods of papers [2]-[3], where László Székelyhidi and the first author had
already shown that the admissibility condition (5) does not imply the uniqueness of L∞ solutions of the Cauchy
problem. However, the examples in the paper [3] had very rough initial data and it was not at all clear whether
more regular data could be achieved. We indeed were inspired by the recent work of Székelyhidi, who in [6]
recasts the vortex-sheet problem of incompressible fluid dynamics in the framework of [2]-[3]. The situation
here is, though, considerably more complicated and hence requires some new ideas.

We note a few important things.
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• The pressure law p is constructed ad hoc and hence it is still open whether special choices of p might
obstruct our construction.

• The data of Theorem 1 cannot be generated by Lipschitz compression waves and hence the question
whether Theorem 1 might hold for regular initial data is still open and currently under investigation.

• In view of the results in [6] and because Theorem 1 shares many similarities with them, it seems likely that
the Dafermos’ entropy rate admissibility criterion does not select the “classical” solution to the Riemann
problem, i.e. there might be a “non-standard” solution which is more dissipative than the classical one.

• Finally, though the solutions of Theorem 1 are very irregular, it is rather unclear where one wishes to set
a boundary. On the one hand the space of BV functions does not seem suitable for an existence theory
in more than one space dimension (see the papers [5] and [1]; however, explicit examples of blow-up are,
to my knowledge, still missing for the system (1)). On the other hand the recent paper [4] shows the
existence of continuous solutions to the incompressible Euler equations which dissipate the kinetic energy.
This may suggest that the framework of [2]-[3] is likely to produce “strange” piecewise continuous solutions
to hyperbolic systems of conservation laws.

My talk will discuss al these issues and give an outlook of several natural questions which these considerations
naturally rise.

References

[1] C. De Lellis, Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system. Duke Math.
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Joint work with: Elisabetta Chiodaroli (Universität Zürich), László Székelyhidi Jr. (Universität Leipzig)

∗ ∗ ∗

Monday, Aula Magna Galilei, Palazzo Bo, 10.45–11.30

Efficient numerical methods for quantifying uncertainty in solutions of systems of
conservation laws

Siddhartha Mishra
Center of Mathematics for Applications, University of Oslo, Norway and Seminar for Applied Mathematics,

ETH Zürich, Switzerland.
smishra@sam.math.ethz.ch
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Inputs to systems of conservation laws such as initial data, boundary conditions, source terms, flux and diffusion
coefficients are characterized by uncertainty, due to measurement errors. This input uncertainty results in
uncertainty in the solutions of the underlying systems. We model input uncertainty as well as the resulting
solutions by random fields. The well-posedness theory of random entropy solutions for scalar conservation laws
with random initial data, sources and fluxes is presented and possible extensions to systems indicated. The
focus of the lecture will be on reviewing state of the art numerical methods for quantifying uncertainty in
random conservation laws. We will consider statistical sampling methods such as the Monte Carlo methods
and the recently developed Multi-level Monte Carlo (MLMC) methods, present the underlying convergence and
computational complexity theories and describe various numerical experiments that show the robustness and
efficiency of these methods. In particular, Euler and MHD equations with random initial data, shallow water
equations with random bottom topography, Euler equations with uncertain equations of state and two-phase
flow equations with random relative permeabilities will be presented. The experiments will demonstrate that
MLMC methods are totally non-intrusive, can handle large number of sources of uncertainty and scale to a very
large number of processors in a parallel computing architecture. Some open issues regarding statistical sampling
methods will be discussed and these methods will be compared with a novel deterministic class of numerical
methods, the so called stochastic finite volume (SFV) methods. The convergence theory of SFV methods will be
indicated and possible advantages of these methods, on problems with small number of sources of uncertainty,
will be highlighted.

Joint work with: Christoph Schwab, Jonas Šukys and Svetlana Tokareva (Seminar for Applied Mathematics, ETH

Zürich) and Nils Henrik Risebro (Center of Mathematics for Applications, University of Oslo)

∗ ∗ ∗

Monday, Aula Magna Galilei, Palazzo Bo, 11.45–12.30

Homogenization and boundary layers

Nader Masmoudi
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA.

masmoudi@cims.nyu.edu

We consider the homogenization of an elliptic system with Dirichlet boundary condition, when the coefficients
of both the system and the boundary datum are ε-periodic. We show that, as ε → 0, the solutions converge in
L2 with a power rate in ε, and identify the homogenized limit system. Due to a boundary layer phenomenon,
this homogenized system depends in a non trivial way on the boundary. Our analysis answers a longstanding
open problem, raised for instance in the book of Bensoussan, Lions and Papanicolaou. It extends substantially
previous results obtained for polygonal domains with sides of rational slopes as well as our previous paper [3]
where the case of irrational slopes was considered.

We consider the homogenization of elliptic systems in divergence form

−∇ · (A (·/ε)∇u) (x) = 0, x ∈ Ω, (1)

set in a bounded domain Ω of Rd, d ≥ 2, with an oscillating Dirichlet data

u(x) = ϕ(x, x/ε), x ∈ ∂Ω. (2)

As is customary, ε > 0 is a small parameter, and A = Aαβ(y) ∈ MN (R) is a family of functions of y ∈ Rd,
indexed by 1 ≤ α,β ≤ d, with values in the set of N ×N matrices. Also, u = u(x) and ϕ = ϕ(x, y) take their
values in RN . We recall, using Einstein convention for summation, that for each 1 ≤ i ≤ N ,

(∇ ·A (·/ε)∇u)i(x) := ∂xα

[
Aαβ

ij (·/ε) ∂xβuj

]
(x).
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In the sequel, greek letters α,β, ... will range between 1 and d and latin letters i, j, k, ... will range between 1
and N .

Systems of type (1) are involved in various domains of material physics, notably in linear elasticity and in
thermics In many cases they come with a right hand side f . In the context of thermics, d = 2 or 3, N = 1, u is
the temperature, and σ = A(·/ε)∇u is the heat flux given by Fourier law. The parameter εmodels heterogeneity,
that is short-length variations of the material conducting properties. The boundary term ϕ in (2) corresponds
to a prescribed temperature at the surface of the body. In the context of linear elasticity, d = 2 or 3, N = d, u
is the unkown displacement, f is the external load and A is a fourth order tensor that models Hooke’s law.

We make three hypotheses:

i) Ellipticity: For some λ > 0, for all family of vectors ξ = ξαi ∈ RNd

λ
∑

α

ξα · ξα ≤
∑

α,β,i,j

Aα,β
ij ξβj ξαi ≤ λ−1

∑

α

ξα · ξα.

ii) Periodicity: ∀y ∈ Rd, ∀h ∈ Zd, ∀x ∈ ∂Ω, A(y + h) = A(y), ϕ(x, y) = ϕ(x, y + h).

iii) Smoothness: The functions A and ϕ, as well as the domain Ω are smooth. It is actually enough to assume
that φ and Ω are in some Hs for s big enough, but we will not try to compute the optimal regularity.

We are interested in the limit ε → 0, i.e. the homogenization of system (1)-(2).

For the non-oscillating Dirichlet problem, one shows that uε weakly converges in H1(Ω) to the solution u0

of the homogenized system {
−∇ ·

(
A0∇u0

)
(x) = 0, x ∈ Ω,

u0(x) = ϕ(x), x ∈ ∂Ω.
(3)

The so-called homogenized matrix A0 comes from the averaging of the microstructure. It involves the periodic
solution χ = χγ(y) ∈ MN (R), 1 ≤ γ ≤ d, of the cell problem:

−∂yα

[
Aαβ(y) ∂yβχ

γ(y)
]
= ∂yαA

αγ(y),

∫

[0,1]d
χγ(y) dy = 0. (4)

The homogenized matrix is then given by:

A0,αβ =

∫

[0,1]d
Aαβ +

∫

[0,1]d
Aαγ∂yγχ

β .

One may even go further in the analysis, and obtain a two-scale expansion of uε. Denoting

u1(x, y) := −χα(y)∂xαu
0(x), (5)

it is proved for instance in the book Bensoussan-Louis and Papanicolaou that

uε(x) = u0(x) + εu1(x, x/ε) + O(
√
ε), in H1(Ω). (6)

Actually, an open problem in this area is to compute the next term in the expansion in the presence of a
boundary. This is actually another motivation for this work.

The main result of this talk is

Theorem (Homogenization in smooth domains)

Let Ω be a smooth bounded domain of Rd, d ≥ 2. We assume that it is uniformly convex (all the principal
curvatures are bounded from below).

Let uε be the solution of system (1)-(2), under the ellipticity, periodicity and smoothness conditions i)-iii).

There exists a boundary term ϕ∗ (depending on ϕ, A and Ω), with ϕ∗ ∈ Lp(∂Ω) for all finite p, and a solution
u0 of (3) with boundary data ϕ∗, such that:

‖uε − u0‖L2(Ω) ≤ Cα εα, for all 0 < α <
d− 1

3d+ 5
. (7)

References
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∗ ∗ ∗

Tuesday, Auditorium Conservatorio Pollini, 8.30–9.15

Evolution problem in general relativity

Igor Rodnianski
MIT, Boston

irod@math.mit.edu

The talk will focus on mathematical aspects of the evolution problem in General Relativity and review its
progress and main challenges. A prominent interaction of Geometry and PDE methods in the subject will be
illustrated on examples ranging from incompleteness theorems, formation of trapped surfaces and the recent
proof of the L2 curvature conjecture.

∗ ∗ ∗

Tuesday, Auditorium Conservatorio Pollini, 9.30–10.15

Some large time behaviors of surface water waves

Sijue Wu
University of Michigan, Ann Arbor

sijue@umich.edu

The mathematical problem of n-dimensional water wave concerns the motion of the interface separating an
inviscid, incompressible, irrotational fluid, under the influence of gravity, from a region of zero density (i.e. air)
in n-dimensional space. It is assumed that the fluid region is below the air region. Assume that the density of
the fluid is 1, the gravitational field is −k, where k is the unit vector pointing in the upward vertical direction,
and at time t ≥ 0, the free interface is Σ(t), and the fluid occupies region Ω(t). When surface tension is zero,
the motion of the fluid is described by






vt + v ·∇v = −k−∇P on Ω(t), t ≥ 0,
divv = 0, curlv = 0, on Ω(t), t ≥ 0,
P = 0, on Σ(t)
(1,v) is tangent to the free surface (t,Σ(t)),

(1)
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where v is the fluid velocity, P is the fluid pressure.
In this talk, we will survey results and ideas concerning the local and global wellposedness of the Cauchy

problem of equation (1), and present some recent work concerning singularities of the solutions.

∗ ∗ ∗

Tuesday, Auditorium Conservatorio Pollini, 10.45–11.30

Review of the original derivation of the Boltzmann equation and its extension to
an infinite-range intermolecular potential

Yoshio Sone
Kyoto University, Japan

yoshio.sone.53c@st.kyoto-u.ac.jp

The original derivation of the Boltzmann equation is reviewed by paying attention to the scale parameters and
the limiting parameters in its derivation. The Boltzmann equation for an infinite-range potential is discussed
on the basis of the review. The contribution of intrinsic gravitational force between molecules is evaluated along
this line.

References

[1] Y. Sone, Molecular gas dynamics, Birkäuser Boston, (2007)

[2] Y. Sone, Supplement toMolecular gas dynamics (Birkäuser, 2007), Kyoto University Research Information
Repository (2011)
(http://hdl.handle.net/2433/66098)

∗ ∗ ∗

Tuesday, Auditorium Conservatorio Pollini, 11.45–12.30

Recent progress in existence theory for the 3D steady compressible Navier-Stokes
equations

Song Jiang
Institute of Applied Physics and Computational Mathematics, Beijing, China

jiang@iapcm.ac.cn

In the last decades, significant progress has been made on the mathematical aspect of the steady Navier-Stokes
equations for three-dimensional compressible flows. In this talk, we shall briefly review some recent existence
results on weak solutions with large data. The ideas and developed techniques used in the existence theory
(such as P.L. Lions’ framework of the existence proof, new estimates in Morry spaces of both pressure and
kinetic energy) will be presented, and some open questions will be discussed.
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∗ ∗ ∗

Wednesday, Aula Magna Galilei, Palazzo Bo, 8.30–9.15

Optimal placement of sensors, actuators and dampers for waves

Enrique Zuazua
BCAM Basque Center for Applied Mathematics

zuazua@bcamath.org

In this lecture we address the problem of the optimal placement of sensors, actuators and dampers for
wave equations. We first discuss the dissipative wave equation where, due to the non-selfadjoint nature of the
generator of the dynamics, characterizing the decay rate of solutions as time tends to infinity needs to take
into account both spectral properties and the propagation of bicharacteristic rays. We present the state of
the art in what concerns the optimal placement of dampers. We then turn our attention to the conservative
wave equation and the optimal placement of sensors and actuators, both fundamental problems from a control
theoretical point of view, with many potential applications. Using Fourier series representations the problem
can be recast as an optimal design one involving all the spectrum of the laplacian. We develop a complete theory
allowing to distinguish, depending on the complexity of the data to be observed/controlled, cases in which the
solution is a classical set constituted by a finite number of subdomains, from others in which the optimal set
is of Cantor type or those when relaxation occurs. These results will be illustrated by numerical simulations.
Most of the work presented in this lecture is part of ongoing research in collaboration with Y. Privat (ENS
Cachan, Antenne de Bretagne, France) and E. Trélat (Université Pierre et Marie Curie (Paris 6), Laboratoire
Jacques-Louis Lions, Paris, France).

References

[1] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, preprint
(2012).

[2] Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation, preprint
(2012).

∗ ∗ ∗

Wednesday, Aula Magna Galilei, Palazzo Bo, 9.30–10.15

Relative entropy methods in the mathematical theory of complete fluid systems

Eduard Feireisl
Institute of Mathematis, Academy of Sciences of the Czech Republic, Prague

feireisl@math.cas.cz

1. Navier-Stokes-Fourier system
Relative entropy methods are based on estimating the distance, in a suitable metric, of a solution to a system

of partial differential equations to a given function, typically another solution of the same system. We use this
approach in the study of weak solutions to the full Navier-Stokes-Fourier system describing the motion of a
viscous, compressible and heat conducting fluid:

∂t/+ divx(/0u) = 0, (1)
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∂t(/0u) + divx(/0u⊗ 0u) +∇xp(/,ϑ) = divxS + /0f, (2)

∂t(/s(/,ϑ)) + divx(/s(/,ϑ)0u) +∇x

(
0q

ϑ

)
= σ, (3)

where / = /(t, x) is the fluid density, 0u = 0u(t, x) the velocity field, and ϑ = ϑ(t, x) the absolute temperature.
Furthermore, p(/,ϑ) is the pressure, s = s(/,ϑ) the specific entropy, S = S(ϑ,∇x0u) the viscous stress determined
by Newton’s law

S(ϑ,∇x0u) = µ(ϑ)
(
∇x0u+∇t

x0u− 2

3
divx0uI

)
+ η(ϑ)divx0uI, (4)

and 0q = 0q(ϑ,∇xϑ) is the heat flux,
0q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (5)

Finally, the symbol σ stands for the entropy production,

σ =
1

ϑ

(
S(ϑ,∇x0u) : ∇x0u− 0q(ϑ,∇xϑ) ·∇xϑ

ϑ

)
. (6)

We suppose that the fluid occupies a bounded domain Ω ⊂ R3, the boundary of which is energetically
insulated, specifically,

0u|∂Ω = 0, 0q(ϑ,∇xϑ) · 0n|∂Ω = 0. (7)

If, moreover, the external force 0f = ∇xF (x) is conservative, there are two obvious constants of motion: The
total mass ∫

Ω
/(t, ·) dx = M0

and the total energy ∫

Ω

(
1

2
/|0u|2 + /e(/,ϑ)− /F

)
(t, ·) dx = E0,

where e = e(/,ϑ) is the specific internal energy interrelated to the pressure and the entropy by means of Gibbs’
relation

ϑDs(/,ϑ) = De(/,ϑ) + p(/,ϑ)D

(
1

/

)
. (8)

2. Thermodynamic stability, ballistic free energy
The so-called hypothesis of thermodynamic stability plays a crucial role in the forthcoming analysis:

∂p(/,ϑ)

∂/
> 0,

∂e(/,ϑ)

∂ϑ
> 0. (9)

We introduce ballistic free energy

HΘ(/,ϑ) = /
(
e(/,ϑ)−Θs(/,ϑ)

)
, Θ > 0,

together with the relative entropy functional

E(/,ϑ|r,Θ) = HΘ(/,ϑ)−
∂HΘ(r,Θ)

∂/
(/− r)−HΘ(r,Θ). (10)

As a direct consequence of (9), we check that

/ /→ HΘ(/,Θ) is strictly convex for any fixed Θ,

ϑ /→ HΘ(/,ϑ) is decreasing for ϑ < Θ and increasing for ϑ > Θ.

Consequently,

E(/,ϑ|r,Θ) ≥ c(K)
(
|/− r|2 + |ϑ−Θ|2

)
for (/,ϑ) ∈ K, (11)

E(/,ϑ|r,Θ) ≥ c(K)
(
1 + /e(/,ϑ) + /|s(/,ϑ)|

)
for (/,ϑ) ∈ [0,∞)2 \K, (12)
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where K ⊂ (0,∞)2 is a compact set containing and open neighbourhood of (r,Θ).

3. Stability of equilibria
Consider the equilibrium solution /̃, ϑ,

∇xp(/̃,ϑ) = /̃∇xF, /̃ = /̃(x), ϑ > 0 a positive constant,

determined by the constraints
∫

Ω
/̃ dx = M0,

∫

Ω

(
/̃e(/̃,ϑ)− /̃F

)
dx = E0.

Solutions of (1 - 3), supplemented with the boundary conditions (7), satisfy the total dissipation balance:

d

dt

∫

Ω

(
1

2
/|0u|2 + E(/,ϑ|/̃,ϑ)

)
dx+ ϑ

∫

Ω
σ dx = 0, (13)

where /̃, ϑ is the equilibrium solution.
Thus the coercivity properties (11), (12) imply that the functional

∫

Ω

(
1

2
/|0u|2 + E(/,ϑ|/̃,ϑ)

)
dx

represents a distance between the trajectory t /→ {/(t, ·),ϑ(t, ·), 0u(t, ·)} to the equilibrium {/̃,ϑ, 0}. In particular,
relation (13) yields unconditional convergence of solutions to equilibria for t → ∞, see [2].

4. Weak solutions and weak-strong uniqueness principle
Weak solutions satisfy equations (1 - 3) in the sense of distributions, where the entropy production rate σ

complies with inequality

σ ≥ 1

ϑ

(
S(ϑ,∇x0u) : ∇x0u− 0q(ϑ,∇xϑ) ·∇xϑ

ϑ

)
, (14)

and the whole system is supplemented by the total energy balance

d

dt

∫

Ω

(
1

2
/|0u|2 + /e(/,ϑ)

)
dx =

∫

Ω
/0f · 0u dx. (15)

Such a definition is
• compatible in the sense that regular weak solutions satisfy the system in the classical sense, in particular,

they satisfy (14) with equality sign;
• weak solutions exist globally in time for any finite energy initial data under suitable structural restrictions

imposed on the state equation and the viscosity coefficients.

Finally, it can be shown, by the method of relative entropy, that the weak solutions satisfy the weak-strong
uniqueness principle. The proof is based on using the relative entropy functional in the form

∫

Ω

(
/|0u− 0̃u|2 + E(/,ϑ|/̃, ϑ̃)

)
dx, (16)

where {/̃, ϑ̃, 0̃u} is a (hypothetical) strong solution emanating from the same initial data. It can be shown that
the weak and strong solutions coincide as long as the latter exists, see [1].
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[2] E.Feireisl and D.Pražák, Asymptotic behavior of dynamical systems in fluid mechanics, AIMS Springfield,
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∗ ∗ ∗

Wednesday, Aula Magna Galilei, Palazzo Bo, 10.45–11.30

Tracking Multiphase Physics: Geometry, Foams, and Thin Films

James A. Sethian
University of California, Berkeley
sethian@math.berkeley.edu

Many scientific and engineering problems involve interconnected moving interfaces separating different regions,
including dry foams, crystal grain growth and multi-cellular structures in man-made and biological materials.
Producing consistent and well-posed mathematical models that capture the motion of these interfaces, especially
at degeneracies, such as triple points and triple lines where multiple interfaces meet, is challenging.

Joint with Robert Saye of UC Berkeley, we introduce an efficient and robust mathematical and computa-
tional methodology for computing the solution to two and three-dimensional multi-interface problems involving
complex junctions and topological changes in an evolving general multiphase system. We demonstrate the
method on a collection of problems, including geometric coarsening flows under curvature and incompressible
flow coupled to multi-fluid interface problems.

Finally, we compute the dynamics of unstable foams, such as soap bubbles, evolving under the combined
effects of gas-fluid interactions, thin-film lamella drainage, and topological bursting.

∗ ∗ ∗

Friday, Room C, Via Bassi , 11.00–11.45

Implicit-Explicit methods for hyperbolic systems with hyperbolic and parabolic
relaxation

Giovanni Russo
Department of Mathematics and Computer Science, University of Catania

russo@dmi.unict.it

In this talk we discuss the problem of constructing effective high order methods for the numerical solution of
hyperbolic systems of balance laws, in presence of stiff source. Because of the stiffness, the use of implicit
integrators is advisable, so that no restrictions on the time step due to small relaxation time will appear. Two
different relaxation systems will be considered, namely hyperbolic and parabolic relaxation. Because of the
different nature of the problems, the two cases will be considered separately. A common denominator of both
treatments is the choice of space discretization. Most schemes for conservation or balance laws are discretized
by finite volume (FV), conservative finite difference (FD), or discontinuous Galerkin (DG). Here we choose
conservative finite difference since it is probably the simplest general approach for the construction of high
order shock capturing schemes for such problems.
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Hyperbolic relaxation The prototype 2× 2 hyperbolic system with hyperbolic relaxation takes the form:






ut + vx = 0

vt + p(u)x = − 1
ε (v − q(u))

u(x, 0) = u0(x), v(x, 0) = v0(x)

(1)

with p′(u) > 0∀u ∈ R. Formally, if ε → 0, the 2×2 system relaxes to the relation v = q(u) and the single scalar
equation for u:

ut + q(u)x = 0 (2)

If the subcharacteristic condition q′(u)2 ≤ p′(u) ∀u ∈ R is satisfied, then the solution of system (1) relaxes to
the solution of Eq.(2). If the initial data is “well prepared”, i.e. if v0(x) = q(u0(x)), then the solution will not
present any “initial layer”.

Numerical solutions of systems of the form (1) can be effectively obtained by using Implicit-Explicit Runge-
Kutta methods in time, coupled with conservative finite-difference in space. The hyperbolic part (which may
be non linear and is non local because of the space derivative) may be treated explicitly, since the system is
non-stiff (if one is interested in resolving all the waves), while the stiff implicit part can be treated implicitly.

The simplest IMEX scheme is obtained by first implicit-explicit Euler scheme, which for system (1) can be
written as {

un+1 = un −∆tDvn

vn+1 = vn −∆tDp(un)− ∆t
ε (vn+1 − q(un+1))

where D represent a discretization of the space derivative. As ε → 0, the numerical solution is projected onto
the manyfold v = q(u), and the scheme relaxes to the Explicit Euler scheme fo the relaxed equation (2).

IMEX-Runge Kutta schemes with s-stages will guarantee higher order accuracy. They are characterized by
two coupled Runge-Kutta schemes, the implicit one identified by the s× s matrix A and the vectors b, c ∈ Rs,
while the explicit scheme is defined by matrix Ã and vectors b̃ and c̃. Usually the implicit scheme is diagonally
implicit, i.e. matrix A is a lower triangular matrix, while Ã is lower triangular with zeroes on the diagonal.

In the design of effective IMEX schemes for problems with hyperbolic relaxation several requirements are
considered, namely:

1. Accuracy. High order in time is achieved by imposing the so-called order conditions obtained by matching
Taylor expansion in time or exact and numerical solution. In addition to the usual order conditions of
the two RK schemes, one has to satisfy some additional coupling conditions (see [4]). Such conditions
guarantee the so called classical order, valid for ε ≈ 1.

2. Asymptotic preservation. We require that the method applied to system (1) becomes a consistent dis-
cretization of the relaxed equation (2) as ε → 0, possibly maintaining the same order of accuracy in the
limit. This property is related to the L-stability of the implicit scheme (see, for example, [6]).

3. Uniform accuracy. The accuracy of the method depends on ε, and a degradation of the accuracy is
observed for intermediate values of ε. It would be desirable to reduce such degradation. The accuracy
dependence is analyzed by comparing the asymptotic expansion in ε of the exact and numerical solution
[1]. Based on such comparison, additional conditions are derived, and used to construct new schemes with
better uniform accuracy in ε.

All such points will be addressed during the talk. Two classes of IMEX-RK will be considered. The first one,
called type A, has the property that the matrix A is invertible. For such methods it is easy to prove that the
IMEX relaxes to the explicit RK applied to the relaxed equation, thus maintaining the order of accuracy in the
variable u. The second class is called CK [4]. For them a11 = 0. Such methods are more difficult to analyze, but
are somehow easier to construct than methods of type A, because some simplifying conditions can be applied
to their coefficients. Several numerical tests on various problems will illustrate the relative merits of the IMEX
schemes presented.

Plenary lectures



26 14th Int’l Conference on Hyperbolic Problems: Theory, Numerics, Applications

Parabolic relaxation Parabolic relaxation is obtained when one is interested in the long time behavior of
the solution of hyperbolic systems with relaxation. The prototype system takes the form






ut + vx = 0

ε2vt + p(u)x = −(v − q(u))

u(x, 0) = u0(x), v(x, 0) = v0(x)

(3)

As the relaxation parameter vanishes, the variable v obeys the relation v = q(u)−p(x)x, while and the asymptotic
behavior of the system is governed by a scalar convection-diffusion equation.

ut + q(u)x = p(u)xx (4)

Notice that the characteristic speeds λ± = ±
√

p′(u)/ε diverge as ε → 0, which makes the numerical treatment
of the system more delicate.

Two different kinds of IMEX Runge-Kutta schemes will be considered. The first will be denoted as partitioned
[2]: the stiffness is associated to the variable. The equation for the non stiff variable u will be treated explicitly,
while the equation for the stiff variable v will be treated implicitly, according to the following scheme (here for
simplicity we consider the case q = 0 and p(u) = u)

ut = −vx [Explicit]

(Partitioned)
vt = −(ux + v)/ε2 [Implicit]

The second family will be denoted additive: the right hand side is given by the sum of two terms, one of which
is treated explicitly, and one implicitly, according to the scheme

ut

vt

=
=

−vx
−ux/ε2

[Explicit]

− v/ε2

[Implicit]

(Additive)

Methods based on the first approach have been more studied in the literature for the diffusion relaxation,
because the hyperbolic part becomes stiff when the system relaxes towards the parabolic equation. In fact,
the characteristic speeds are c± = ±1/ε, and classical explicit schemes for the hyperbolic part would suffer
by a CFL restriction ∆t ≤ εC∆x, where the maximum CFL number C is of order unity and depends on the
particular scheme.

Two main issues will be discussed here. First, we shall show that the use of classical IMEX schemes for
hyperbolic systems with stiff relaxation, with L-stable implicit part (see, for example, [3]), applied to system (3)
in partitioned form will lead to consistent explicit discretization of the limit convection-diffusion equation (4).
Because of this, the limit scheme will suffer of the typical parabolic CFL restriction ∆t ∝ ∆x2. To overcome
such a drawback, in both approaches one can make a wise use of the asymptotic limit, by adding and subtracting
the same term, one treated implicilty and one explicitly, so that, in the limit ε → 0, the scheme converges to
an implicit method for the diffusion equation (see [2,3]).

The second part concerns the analysis of the additive approach [3]. This approach is attractive, because it is
the more commonly used one for hyperbolic systems with relaxation, however it has the serious drawback that
the hyperbolic part itself is stiff, and therefore it appears almost hopeless to treat a stiff term with an explicit
scheme, and get around with prohibitive stability conditions. We show that the simple Explicit-Implicit Euler
scheme applied to system (3) (with q = 0 and p = u) in the additive form converges to explicit Euler schemes
applied to the diffusion equation (apart from higher order terms), while other classical IMEX schemes fail. The
behavior is explained by an analysis based on an asymptotic expansion in ε of the exact and numerical solution.
The analysis introduces additional conditions that need to be satisfied. Using such conditions it is possible to
derive new second order IMEX additive schemes that posses the desired AP property.

Several applications to various test cases, including non linear diffusion, and model kinetic equations will be
presented.
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Joint work with: Sebastiano Boscarino (University of Catania), Lorenzo Pareschi (University of Ferrara)

∗ ∗ ∗

Friday, Room C, Via Bassi, 12.00–12.45

Strong stability of shocks in L2 for conservation laws, and application to
asymptotic analysis

Alexis F. Vasseur
University of Texas at Austin
vasseur@math.utexas.edu

We develop a theory based on relative entropy to show the uniqueness and L2 stability (up to a translation)
of extremal entropic Rankine-Hugoniot discontinuities for systems of conservation laws (typically 1-shocks, n-
shocks, 1-contact discontinuities and n-contact discontinuities of large amplitude) among bounded entropic weak
solutions having an additional trace property. The existence of a convex entropy is needed. No BV estimate is
needed on the weak solutions considered. The theory holds without smallness condition. The assumptions are
quite general. For instance, strict hyperbolicity is not needed globally. For fluid mechanics, the theory handles
solutions with vacuum.

Note that the relative entropy method is also an important tool in PDEs in the study of asymptotic limits.
Applications of the relative entropy method in this context began with the work of Yau and have been studied
by many others. However, for the compressible limit to conservation laws, up to now, this method was successful
as long as the limit solution stayed Lipschitz. We will present, also, some new result of asymptotic analysis to
shocks of conservation laws using the relative method.

Joint work with: Kyudong Choi (University of Texas at Austin), Nicholas Leger (Carnegie Mellon)
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4 Abstracts of invited lectures

Monday, Room C, Via Bassi, 14.30–15.10

On variational kinetic Formulations for scalar conservation laws and the
equations of gas dynamics

Mikhail Perepelitsa
University of Houston
misha@math.uh.edu

The kinetic formulation of weak entropy solutions of scalar conservation laws, developed by Lions-Perthame-
Tadmor(1994), can be equivalently expressed in a variational form. This property was discovered by Panov(1996)
in his theory of kinetic measure-valued solutions and, independently, in a recent paper of Brenier(2009). We
discuss a number of interesting properties of such variational kinetic solutions, in particular, the geometric
interpretation of solutions as curves in a suitable Hilbert space for which the tangent vector minimizes an
interaction functional. In the second part of the talk we will describe a variational kinetic formulation for the
Euler equations of gas dynamics that has the geometric structure similar to the structure of the kinetic form of
scalar conservation laws.

∗ ∗ ∗

Monday, Room D, Via Bassi, 14.30–15.10

Domain continuity for the
Euler and Navier-Stokes equations

David Gérard-Varet
Université Paris 7 and Institut de Mathématiques de Jussieu

gerard-varet@math.jussieu.fr

The aim of the talk is to understand the effect of rough walls or rough obstacles on fluid flows. It has various
physical motivations, including drag reduction in microfluidics. Mathematically, there are two natural ways to
model the roughness:

1. by considering fluid domains with non-smooth boundaries.

2. by considering fluid domains with oscillating boundaries, the oscillation being of small amplitude and
wavelength.

The first model often raises numerical and mathematical difficulties (like a lack of Cauchy theory), which requires
to consider smooth approximations Ωε of the irregular domain Ω0. As regards the second model, denoting by ε
the small wavelength or amplitude of the oscillating boundary, one is also led to consider a sequence of domains
Ωε parametrized by ε.

This leads naturally to questions of domain continuity for fluid models, broadly: if Ωε converges to Ω0, does
the associated fluid velocity uε converge to u0 ? Are the boundary conditions preserved in the limit?

We shall investigate these questions in the context of the Euler and Navier-Stokes equations.
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∗ ∗ ∗

Monday, Room C, Via Bassi, 16.35–17.15

Complete synchronization of particle and kinetic Kuramoto models on networks

Seung-Yeal Ha
Department of Mathematical Sciences, Seoul National University

syha@snu.ac.kr

In this talk, we will discuss the complete synchronization of particle and kinetic Kuramoto models with general
couplings. The synchronization of many weakly coupled oscillators often appears in natural systems, e.g., two
pendulum clocks suspended from the same bar, the flashing of fireflies, the singing of crickets and hand clapping
by audiences in a concert hall, etc. These phenomena can be modeled by the coupled oscillators on some
networks. The network associated with the Kuramoto model with all-to-all coupling is simply the Kuramoto
oscillators on the complete graph. It is easy to say that the network structure will affect the synchronizability
of Kuramoto oscillators scattered on the vertices of networks numerically. Then a natural question is how the
network structure affects the complete synchronization of oscillators. For this, we consider two cases ”symmetric
connected graph and an asymmetric graph with hierarchical leadership” and we will provide some quantitative
theorems for the synchronizability of particle and kinetic Kuramoto models.

∗ ∗ ∗

Monday, Room D, Via Bassi, 16.35–17.15

Two-Phase Flow in Porous Media:
Shock Waves and Stability

Michael Shearer
North Carolina State University

shearer@ncsu.edu

In this talk, I discuss a variety of contexts in which undercompressive shock waves have been discovered recently.
The main focus will be on models of two-phase flow in porous media. Plane waves are modeled by the one-
dimensional Buckley-Leverett equation, a scalar conservation law. The Gray-Hassanizadeh model for rate-
dependent capillary pressure adds dissipation and a BBM-type dispersion, giving rise to undercompressive
waves. Two-phase flow in porous media is notoriously subject to fingering instabilities, related to the classic
Saffman-Taylor instability. However, a two dimensional linear stability analysis of sharp planar interfaces
reveals a criterion predicting that weak Lax shocks may be stable or unstable to long-wave two-dimensional
perturbations. This surprising result depends on the hyperbolic-elliptic nature of the system of linearized
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equations. Numerical simulations of the full nonlinear system of equations, including dissipation and dispersion,
verify the stability predictions at the hyperbolic level.

Joint work with: Kim Spayd and Zhenzheng Hu (North Carolina State University).

∗ ∗ ∗

Tuesday, Room C, Via Bassi, 14.30–15.10

Almost sure existence of global weak solutions for supercritical Navier-Stokes
equations

Gigliola Staffilani
Massachusetts Institute of Technology

gigliola@math.mit.edu

In this talk we show that after suitable data randomization there exists a large set of supercritical periodic
initial data for both 2D and 3D Navier-Stokes equations for which global energy bounds are proved. As a
consequence we obtain almost sure supercritical global weak solutions. We also show that in 2D these global
weak solutions are unique.

To explain the problem more in details let’s start by considering the initial value problem for the incom-
pressible Navier-Stokes equations given by






∂t0u = ∆0u− P∇ · (0u⊗ 0u); x ∈ Td or Rd, t > 0
∇ · 0u = 0

0u(x, 0) = 0f(x),
(1)

where f is divergence free and P is the projection into divergence free vector fields given via

P0h = 0h−∇ 1

∆
(∇ · 0h). (2)

It is well-known that global well-posedness of (1) when the space dimension d = 3 is a long standing open
question. This is related to the fact that the equations (1) are so called super-critical when d > 2. Indeed recall
that if the velocity vector field 0u(x, t) solves the Navier-Stokes equations (1) in Td then 0uλ(x, t) with

0uλ(x, t) = λ0u(λx,λ2t),

is also a solution to the system (1) for the initial data

0u0 λ = λ0u0(λx) . (3)

The spaces which are invariant under such a scaling are called critical spaces for the Navier-Stokes equations.
Examples of critical spaces for the Navier-Stokes in Td are:

Ḣ
d
2−1 ↪→ Ld ↪→ Ḃ

−1+ d
p

p|p<∞,∞ ↪→ BMO−1. (4)

In particular, for Sobolev spaces, ‖0uλ(x, 0)‖Ḣsc = ‖0u(x, 0)‖Ḣsc , when sc = d
2 − 1. We recall that the

exponents s are called critical if s = sc, sub-critical if s > sc and super-critical if s < sc.
On the other hand, classical solutions to the (1) satisfy the decay of energy which can be expressed as:

‖u(x, t)‖2L2 +

∫ t

0
‖∇u(x, τ)‖2L2 dτ = ‖u(x, 0)‖2L2 . (5)
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Note that when d = 2 the energy ‖u(x, t)‖L2 , which is the globally controlled thanks to (5), is exactly the
scaling invariant Ḣsc = L2-norm. In this case the equations are said to be critical. When d = 3, the energy
‖u(x, t)‖L2 is at the super-critical level with respect to the scaling invariant Ḣ

1
2 -norm, and hence the Navier-

Stokes equations are said to be super-critical and the lack of a known bound for the Ḣ
1
2 contributes in keeping

the global well-posedness question for the initial value problem (1) still open.
In this talk we consider the periodic Navier-Stokes problem in (1) and in particular we address the question

of long time existence of weak solutions for supercritical initial data both in d = 2, 3, see also [8]. For d = 2
we address uniqueness as well. Our goal is to show that by randomizing in an appropriate way the initial data
in H−α(Td), d = 2, 3 (for some α = α(d) > 0) which is below the critical threshold space Hsc(Td), one can
construct a global in time weak solution to (1). Such solution is unique when d = 2. We note that similar
well-posededness results were obtained for the super-critical wave equations by Burq and Tzvetkov in [1,2,3].
The approach of Burq and Tzvetkov was applied in the context of the Navier-Stokes in order to obtain local in
time solutions to the corresponding integral equation for randomized initial data in L2(T3), as well as global in
time solutions to the corresponding integral equation for randomized initial data that are small in L2(T3) by
Zhang and Fang [9] and by Deng and Cui [4] Also in [5], Deng and Cui obtained local in time solution to the
corresponding integral equation for randomized initial data in Hs(Td), for d = 2, 3 with −1 < s < 0. However
our result is the first to offer a construction of a global in time weak solution to (1) for randomized initial
data (without any smallness assumption) in negative Sobolev spaces H−α(Td), d = 2, 3, for some α = α(d) > 0.

Roughly speaking the idea of the proof is the following: we start with a divergence free and mean zero
initial data 0f ∈ (H−α(Td))d, d = 2, 3 and suitably randomize it to obtain 0fω which in particular preserves the

divergence free condition. Then we seek a solution to the initial value problem (1) in the form 0u = et∆ 0fω + 0w.

In this way we single out the linear evolution et∆ 0fω and identify the difference equation that 0w should satisfy.
At this point it becomes convenient to state an equivalence lemma between the initial value problem for the
difference equation and the integral formulation of it. This equivalence is similar to Theorem 11.3 in [7], see
also [6]. We will be using the integral equation formulation near time zero and the other one away from zero.
The key point of this approach is the fact that although the initial data are in H−α for some α > 0, the heat
flow of the randomized data gives almost surely improved Lp bounds). These bounds in turn yield improved
nonlinear estimates arising in the analysis of the difference equation for 0w almost surely, and consequently a
construction of a global weak solution to the difference equation is possible.
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Joint work with: Andrea Nahmod (University of Massachusetts, Amherst ) and Natasa Pavlovic (University of Texas,

Austin).
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Tuesday, Room D, Via Bassi, 14.30–15.10

High-order gas evolution model for computational fluid dynamics

Kun Xu
Hong Kong University of Science and Technology

makxu@ust.hk

The foundation for the development of modern computational fluid dynamics (CFD) is based on the Riemann
solution of the Euler equations. The high-order schemes are basically related to high-order spatial reconstruction.
In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal
accuracy of the scheme is improved through the Runge-Kutta time stepping method. The close coupling
between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due
to its spatial and temporal decoupling. For the viscous flow, the piece-wise discontinuous initial data and
the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the
divergence of the viscous and heat conducting terms due to initial discontinuity. Therefore, in order to alleviate
this difficulty, the inviscid and viscous terms in the NS equations are numerically treated differently in most
CFD methods.

Based on the Boltzmann equation, we are going to present a high-order gas dynamic model, the so-called
time-dependent flux function at a cell interface, from a high-order discontinuous initial reconstruction. The
theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement
on the smoothness of the initial data and the kinetic equation has dynamic mechanism to construct a dissipative
wave structure starting from an initially discontinuous flow condition on a time scale of particle collision time.
More specifically, the gas-kinetic scheme covers a whole spectrum of scales, from the kinetic to the hydrodynamic
ones. This talk will present a hierarchy to construct high-order gas-kinetic scheme (GKS).

In comparison with the Riemann solver, the GKS provides a valid physical evolution process from a disconti-
nuity. The GKS first presents particle free transport process, then through the particle collision it generates the
dissipative wave structure. With intensive particle collisions within a time step, such as in the hydrodynamic
scale, a Navier-Stokes gas distribution function can be obtained from the GKS. The Euler solution is considered
as a limiting case when intensive particle collisions take palce. Numerically, the GKS formulation makes a
smooth transition from the upwind to the central difference scheme in the process of gas evolution. It is a
unification of two different algorithm development methodologies in the traditional CFD methods. This kind
of mechanism can be hardly described using any macroscopic governing equation. Theoretically, the gas-kinetic
equation provides a mechanism for the transport in all scales from kinetic to hydrodynamic. On the other hand,
the macroscopic governing equations, such as the NS equations, describe the flow evolution in the hydrodynamic
one only. How to handle the discontinuity becomes a fundamental problem in CFD. Even though the Riemann
solution of the Euler equations can mathematically handle the initial discontinuity, the validity of using such a
solution in the description of a numerical shock in a discretized space is questionable from a physical modeling
point of view.

A numerical shock layer on the scale of a few mesh points needs to be considered as an enlarged physical shock
structure. Since a physical shock has the thickness on the order of particle mean free path, an enlarged numerical
shock layer means the size to become the length scale of numerical particle mean free path. Therefore, on the
scale of cell size, the non-equilibrium flow physics has to be taken into account in the gas evolution process in
the shock region. As we know, as a particle moves across a physical shock layer, there is only limited number of
particle collisions. The non-equilibrium shock structure is constructed through the competition between particle
free transport and collision. This non-equilibrium process provides the appropriate dissipation for the smooth
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transition from one equilibrium state at upstream to another equilibrium one at downstream. But, inside the
numerical shock layer, the exact Riemann solver replaces the non-equilibrium physical reality by an equilibrium
one with the assumption of infinite number of particle collisions and the generation of distinguishable waves.
As a result, the numerical process of the Riemann solution has no a dynamic dissipative mechanism, especially
in multi-dimensional case. Therefore, the use of the Euler equations in the flux modeling must have problem in
the non-equilibrium region, such as the triggering of shock instability in Godunov method in high Mach number
flow simulation. The GKS follows closely the flow physics. The initial free transport, which provides numerical
dissipation, depends closely on the jump of the discontinuity. For the contact discontinuity wave, the exact
Euler solution assumes infinite number of particle collisions which prevent the penetration of particles crossing
each other. For the GKS, the particle penetration exists all the time in its underlying modeling.

In a discretized space, any physical discontinuity is enlarged to the cell size scale due to the limited resolution.
Since the Riemann problem is truthfully solving the Euler equations, the absence of non-equilibrium mechanism
indicates that the Euler solution cannot be properly used as dynamic evolution model for the enlarged dissipative
region. One may think of using the NS equations with dissipative terms to capture the corresponding non-
equilibrium layer. But, this cannot be fully valid, because the NS equations have only the physical dissipation
on the hydrodynamic scale, which cannot be used to describe the flow behavior in the kinetic scale, such as the
initial particle free transport process from an discontinuity.

The main idea we would like to deliver is that for a shock capturing scheme we need a correct physical
mechanism to model the gas evolution from a discontinuity in the discretized space. There is no valid macroscopic
governing equations to describe such a physical mechanism yet. The value of gas-kinetic scheme is that it
provides a new way for the CFD algorithm development. A valid physical process will become more important
in the construction of high-order CFD methods. The numerical examples will demonstrate the importance of
high-order gas evolution model.
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Relative entropy in diffusive relaxation

Corrado Lattanzio
University of L’Aquila
corrado@univaq.it

As it is well–known, the presence of convex dissipative entropies in hyperbolic models with relaxation gives
a stabilizing effect to the system and leads to global existence results, at least near equilibria. In that cases, it
is possible to produce a relative entropy identity, which among other applications, can control the hyperbolic-
to-hyperbolic relaxation process and give a simple and direct convergence framework, at least in the case of
smooth equilibria.

The aim of this talk is to describe this approach in the case of diffusive relaxations, again for smooth
solutions to the parabolic equilibria. Thanks to the relative entropy identity, we obtain a stability estimate and
convergence for the relaxation limit. The results are obtained in various different cases, and in particular for
multidimensional Euler equations.

Joint work with: Athanasios E. Tzavaras (University of Crete)
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Tuesday, Room D, Via Bassi, 16.35–17.15

Controllability results for degenerate parabolic operators.

Karine Beauchard
CNRS, CMLS, Ecole Polytechnique

Karine.Beauchard@math.polytechnique.fr

Unlike uniformly parabolic equations, parabolic operators that degenerate on subsets of the space domain
exhibit very different behaviors from the point of view of controllability. For instance, null controllability in
arbitrary time may be true or false according to the degree of degeneracy and there are also examples where a
finite time is needed to ensure such a property. This talk will survey most of the theory that has been established
so far for operators with boundary degeneracy, and discuss recent results for operators of Grushin type and of
Kolmogorov type, which degenerate in the interior.

Joint work with: Piermarco Cannarsa (Universita degli Studi di Roma Tor Vergata), Roberto Guglielmi (Universita degli

Studi di Roma Tor Vergata).
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Boundary kernels for dissipative systems

Shih-Hsien Yu
National University of Singapore

matysh@nus.edu.sg

In this talk we will present a study on the kernel functions of the Dirichlet-Neumann maps for dissipative systems
in a half space. We start from the consideration of the Greens function for an initial-boundary value problems
for linear dissipative systems. With the fundamental solutions of the dissipative systems, one can reduce the
initial-boundary value problems into boundary value problems so that the well-posedness of the system gives
linear algebraic systems over the polynomials in the Fourier and Laplace variables for the Dirichlet-Neumann
datum at the boundary, where Fourier variables are in the directions of boundary, and the Laplace is for the time
variable. In order to invert the Dirichlet-Neumann map from the transformation variables to the space-time
variables we introduce a path, which contains the spectral information of the systems, in the complex plan for
the time Laplace variable. On this path, the Laplace-Fourier variables can be recombined, through the Cauchys
complex contour integral, into a form resemble to that for a whole space problem. Thus, the classical results
for the whole space problem can be used to obtain the pointwise spae-time structure for long wave components
of the kernel function of the Dirichlet-Neumann map for points within a finite Mach region. We also apply
direct energy estimates to yield the pointwise structure of the kernel functions in any high Mach number region.
Finally, we have obtained exponentially sharp estimates for the kernel function in the space-time variables. For
example, the kernel functions for both DAlermbert wave equation with dissipation and a linearized compressible
Navier-Stokes equation can be expressed explicitly in space-time variables with errors which decay exponentially
in both space-time variables. This gives a globally quantitative and qualitative wave propagations at boundary.
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Thursday, Room D, Via Bassi, 8.30–9.10

Viscek flocking dynamics and phase transition

Jian-Guo Liu
Duke University

jliu@math.duke.edu

Consider the following nonlinear Fokker-Planck equation describing self-propelled dynamics for some large
biological system such as flocking of birds and schooling of fishes,

ft + ω ·∇xf = d∆ωf +∇ω · (f∇ωφ)

where f(x,ω, t) is a distribution function on Rn × Sn−1. The self-propelled speeds for all biological agents
are assumed to be uniform and take value one for simplest. φ is the interaction potential describing Viscek
self-alignment of the orientation towards its local averaged orientation [2, 5]

φ(x,ω) = ν(ρ)

∫

Rn×Sn−1

ψ(|x− x′|)ω · ω′f(x′,ω′, t)dx′dω′

∆ω, ∇ω·, ∇ω are the laplican, divergence and gradient operator on Sn−1. ρ =
∫
fdω is density.

The flocking behavior in the above Fokker-Planck equation appears in a similar form as orientational phase
transitions as in liquid crystal and ferromagnetism at a critical norse level dc or equivalently at a critical mass
density ρc. Below this value, the only equilibrium distribution is isotropic for orientations and is stable. Any
initial distribution relaxes exponentially fast to this isotropic equilibrium state. By contrast, when the density
is above the threshold, a second class of anisotropic equilibria formed by Von-Mises-Fischer distributions of
arbitrary orientation appears. The isotropic equilibria become unstable and any initial distribution relaxes
towards one of these anisotropic states with exponential speed of convergence.

In this talk, I will present a joint work with Amic Frouvelle [4] on rigorous analysis of the phase transition
for the the spatial homogeneous dynamics and a joint work with Pierre Degond and Amic Frouvelle [1] on
asymptotic analysis for the spatial inhomogeneous case on the hydrodynamics limit for the anisotropic region
and nonlinear diffusion approximation in the isotropic region.
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Thursday, Room C, Via Bassi, 10.35–11.15

Hyperbolic Equations on Networks

Michael Herty
RWTH Aachen University

herty@mathc.rwth-aachen.de

The theory of transportation methods has been an active area of research since almost three decades. Early
work has been inspired by studying the physics of road networks or large scale production networks. Later
ideas, methods and results have been extended to electric, biological or social networks. A major motivation for
studying systems on the rather particular geometry of a network stems from the huge economic and sociologic
impact of results in this area. The common ground are networks wherein the dynamics is governed by partial
differential equations, in particular conservation laws and balance equations where we use the various types of
solutions that have been considered in the mathematical literature. In particular in the context of mathematical
modeling and analysis a variety of literature exists concerning network flows. These publications range from
application in data networks (e.g. [1]) and traffic flow (e.g. [2]) over supply chains (e.g. [3]) to flow of water in
canals (e.g. [4,5]). Also in the engineering community, gas flow in pipelines is in general modeled by transient
models, see e.g. [6]. More detailed models based on partial differential equations have also been introduced be
found e.g. in [7]. Therein, the flow of gas inside the pipes is modeled by a system of balance laws. At junctions
of two or more pipes, algebraic conditions couple the solution inside the pipeline segments and yield a network
solution. A different physical problem, leading to a similar analytical framework, is that of the flow of water
in open channels, considered [8]. Starting with the classical work, several other recent papers deal with the
control of smooth solutions [9]. In all these cases an assumption on the C1-norm of initial and boundary data
is necessary. Clearly, the given references are incomplete and we refer to the papers and references therein for
more details.

In this talk we want to present recent results on conservation laws on networks starting from questions
the modeling of physical processes on these networks and going further to tackle questions of control and
stablization of network flows. We will summarize existing and new results and present a common framework
of the mathematical discussion of network solutions [10]. Based on the analytical results controllability and
optimization issues will be discussed. Controlability issues have also been analysed using Lyapunov functions
as well as energy estimates and feedback boundary control laws. Currently, most results are based on single
equations and have not been extended to networks. In order to obtain a network formulation, coupling conditions
which yield boundary conditions are essential. The formulation of well-defined node conditions that are also
reasonable model is still a major issue in the mathematical discussion. Further, we discuss the incoporation of
results on feedback laws at boundaries of single controlled partial differential equations within suitable coupling
conditions. Concerning optimization problems on networks only a few rigorous results exists so far. We present
some approaches and discuss recent results in the direction of the characterization of optimal controls with
applications to supply chain networks and traffic flow. Numerical examples will be given.

We want to present a broad view on these problems and also give some directions for open problems and
possible future research.
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Singular behavior of a rarefied gas on a planar boundary

Shigeru Takata
Department of Mechanical Engineering, Kyoto University

takata.shigeru.4a@kyoto-u.ac.jp

We will discuss some singularities in a rarefied gas that should be observed on a planar boundary.
It has already been shown in 1960s and 1970s by Sone [1] and Sone & Onishi [2] that the slope of a

macroscopic quantity diverges logarithmically in a rarefied gas on a planar boundary, by using the Bhatnagar-
Gross-Krook-Welander (BGK or BKW) model of the Boltzmann equation. Recently, Lilley & Sader [3] have
also numerically pointed out the slope divergence of macroscopic quantities on the boundary for the Boltzmann
equation. However, the divergence rate is not clear in their discussion. With I-Kun Chen and Tai-Ping Liu [4],
we have recently proved for a highly rarefied gas on the basis of the Boltzmann equation that the slope of flow
velocity diverges logarithmically in the thermal transpiration between two parallel plates. In this talk, we will
show on the basis of the Boltzmann equation that, irrespective of the Knudsen number,

(i) the slope of a macroscopic quantity diverges logarithmically on a planar boundary;

(ii) the logarithmic behavior of (i) induces a microscopic divergence on the boundary, namely the derivative
of velocity distribution function with respect to the normal component of the molecular velocity diverges
logarithmically for the molecular velocities parallel to the boundary;

(iii) the singularity (i) is related quantitatively to the discontinuity of the velocity distribution function on the
boundary.
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On the finite-time splash and splat singularities for the 3-D free-surface Euler
equations

Steve Shkoller
University of California Davis
shkoller@math.ucdavis.edu

We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity
fields have solutions which can form a finite-time “splash” (or “splat”) singularity first introduced in [1], wherein
the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface).
Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop
impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary
problem that we used in [2], combined with a novel approximation scheme of a finite collection of local coordinate
charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the
fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other
fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.
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Thursday, Room D, Via Bassi, 14.10–14.50

Entropy viscosity for hyperbolic systems and questions regarding parabolic
regularization

Jean-Luc Guermond
Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA

guermond@math.tamu.edu

A numerical method for approximating nonlinear conservation laws is described [1]. The technique consists of
augmenting the numerical discretization at hand with a viscous regularization where the nonlinear viscosity is
based on the local size of a discrete entropy production. This method is simple to program and does not use
any flux or slope limiters. The method can reasonably be justified for scalar conservation equations. Stability
results are established for scalar conservation equations using some explicit Runge Kutta techniques.

The implementation is not so clear when dealing with systems, since the question of parabolic regularization
is mainly open in this case. The particular question of the Euler system and the Navier-Stokes regularization is
addressed. A nonstandard (non-diagonal) regularization is proposed that, in addition to stabilizing the velocity,
acts on the density and the internal energy and is such that the entropy sets {s(e, ρ) ≥ r} are positively invariant.

The technique is illustrated on various benchmark problems using continuous finite elements, discontinuous
finite elements, spectral elements, and Fourier series.
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Stability of the free plasma-vacuum interface

Paolo Secchi
Department of Mathematics
Brescia University, Italy

paolo.secchi@ing.unibs.it

We consider the free boundary problem for the plasma-vacuum interface in ideal compressible magnetohydro-
dynamics (MHD).

Plasma-vacuum interface problems appear in the mathematical modeling of plasma confinement by magnetic
fields (see, e.g., [2]). In this model the plasma is confined inside a perfectly conducting rigid wall and isolated
from it by a vacuum region, due to the effect of strong magnetic fields. In astrophysics, the plasma-vacuum
interface problem can be used for modeling the motion of a star or the solar corona.

Let us assume that the interface between plasma and vacuum is given by a hypersurface

Γ(t) := {(x′, x3) ∈ R3 , x3 = f(t, x′)} ,
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where t ∈ [0, T ] and x′ = (x1, x2) and let Ω+(t) and Ω−(t) be space-time domains occupied by the plasma and
the vacuum respectively. Then we have Ω±(t) = {x3 ≷ f(t, x′)}.

In the plasma region Ω+(t) the flow is governed by the usual compressible MHD equations:






∂tρ+ div (ρv) = 0,

∂t(ρv) + div (ρv ⊗ v −H ⊗H) +∇q = 0,

∂tH −∇× (v×H) = 0,

∂t
(
ρe+ 1

2 |H|2
)
+ div

(
(ρe+ p)v +H×(v×H)

)
= 0,

(1)

where ρ denotes density, v ∈ R3 plasma velocity, H ∈ R3 magnetic field, p = p(ρ, S) pressure, q = p + 1
2 |H|2

total pressure, S entropy, e = E + 1
2 |v|

2 total energy, and E = E(ρ, S) internal energy. With a state equation
of gas, ρ = ρ(p, S), and the first principle of thermodynamics, (1) is a closed system.

System (1) is supplemented by the divergence constraint

divH = 0 (2)

on the initial data.
In the vacuum domain Ω−(t), as in [1, 2], we consider the so-called pre-Maxwell dynamics

∇×H = 0, divH = 0, (3)

describing the vacuum magnetic field H ∈ R3. That is, as usual in nonrelativistic MHD, in the Maxwell
equations we neglect the displacement current (1/c) ∂tE, where c is the speed of light and E ∈ R3 the electric
field.

The plasma variable U = U(t, x) = (q, v,H, S) is connected with the vacuum magnetic field H through the
relations [1, 2]

∂tϕ = v ·N, [q] = 0, H ·N = 0, H ·N = 0 on Γ(t), (4)

where N = (−∂1f,−∂2f, 1) and [q] = q|Γ − 1
2 |H|2|Γ denotes the jump of the total pressure across the interface.

Therefore the interface Γ(t) moves with the plasma, the total pressure is continuous across Γ(t), the magnetic
field on both sides is tangent to Γ(t). Because of (4), the free interface Γ(t) is a characteristic boundary for (1).
This fact gives a loss of control of derivatives in the normal direction to the boundary.

We assume that the plasma density does not go to zero continuously at the interface (clearly in the vacuum
region Ω−(t) the density is identically zero), but has a jump, meaning that it is bounded away from zero in the
plasma region and it is identically zero in the vacuum region. This assumption is compatible with the continuity
of the total pressure in (4).

It is well-known that for general data the linearization of (1) - (4) may be either violently unstable or
weakly (neutrally) stable because of the failure of the uniform Kreiss-Lopatinski condition. For instance, posing
H = H = 0 gives the Euler compressible equations in vacuum and the Rayleigh-Taylor instability may occur.
The introduction of the magnetic field may have a stabilizing effect and it is of interest to find under which
conditions the problem becomes stable.

In our talk we discuss the well-posedness of the problem in suitable anisotropic Sobolev spaces under the
stability condition

|H ×H| > 0 on Γ(t), (5)

i.e. provided the magnetic fields on the two sides of the free-boundary are not colinear.
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Points of General Relativistic Shock Wave Interaction are ”Regularity
Singularities” where Spacetime is Not Locally Flat

Moritz Andreas Reintjes
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In this talk I am going to present the results of a recent paper [2], in which we show that the regularity of
the gravitational metric tensor cannot be lifted from C0,1 to C1,1 by any C1,1 coordinate transformation in a
neighborhood of a point of shock wave interaction in General Relativity, without forcing the determinant of
the metric tensor to vanish at the point of interaction. This is in contrast to Israel’s celebrated 1966 Theorem,
which states that such coordinate transformations always exist in a neighborhood of a point on a smooth single
shock surface [1]. The results imply that points of shock wave interaction represent a new kind of singularity
in spacetime, singularities that make perfectly good sense physically, that can form from the evolution of
smooth initial data, but at which spacetime is not locally Minkowskian under any coordinate transformation.
In particular, at such singularities, delta function sources in the second derivatives of the gravitational metric
tensor exist in all coordinate systems, but due to cancelation, the Riemann curvature tensor remains uniformly
bounded.
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Lipschitz stability for the Hunter-Saxton and Camassa-Holm equation
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In this talk, we will present the construction of a metric for two related nonlinear partial differential equations,
the Hunter-Saxton equation and the Camassa-Holm equation. This metric makes the semigroup of solutions
Lipschitz continuous. The solutions typically break down in finite time. After breakdown, they are no longer
unique and can be prolongated in several consistent ways. By using a change of variable - from Eulerian to
Lagrangian coordinates - and introducing an extra energy density variable, we obtain an equivalent system
which is well-posed as a system of ordinary differential equations in a Banach space. Going back to the original
Eulerian variable, we can construct a semigroup of conservative solutions (solutions which for almost every time
conserve the total energy). However, we observe that this semigroup of solutions is not stable with respect to
any standard norm. To construct a metric which yields stability, we transport the topology of the equivalent
system in Lagrangian variables to the Eulerian setting. The difficulty is that the mapping between Lagrangian
and Eulerian variables is not a bijection. However, by precisely identifying the discripency between the two sets
as the action of a group (group of diffeomorphism or relabelling group), we can eliminate the redundancy which
is introduced by the Lagrangian variables.
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Two uniqueness results for the two-dimensional continuity
equation with velocity having L1 or measure curl
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In this seminar I will present two results regarding the uniqueness (and further properties) for the two-
dimensional continuity equation {

ut + div (bu) = 0
u(0, x) = ū(x)

and the ordinary differential equation





∂Φ

∂t
(t, x) = b

(
t,Φ(t, x)

)

Φ(0, x) = x

in the case when the vector field
b(t, x) : [0, T ]× R2 → R2
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is bounded, divergence free and satisfies additional conditions on its distributional curl:

curl b = −∂x2b
1 + ∂x1b

2 .

Such settings appear in a very natural way in various situations, for instance when considering two-dimensional
incompressible fluids.

(1) The case when b is time-independent and its curl is a (locally finite) measure (without any sign condition).
Uniqueness of bounded distributional solutions to the continuity equation follows from a series of papers by
Alberti, Bianchini and myself. In such papers, we provide a characterization of two-dimensional bounded
divergence free vector fields enjoying uniqueness, in terms of the so-called weak Sard property. The weak
Sard property is a suitable measure theoretical version of the usual Sard property satisfied by “sufficiently
differentiable” maps between Euclidean space. It is possible to prove that the weak Sard property is enjoyed
by vector fields with measure curl.

(2) The case when b is time-dependent and its curl belongs to L1(R2). This case is covered by a joint
result with Bouchut, extending previous works with De Lellis. This time the idea is to work at the level of the
ordinary differential equation, deriving effective estimates of stability and compactness under suitable bounds
on the velocity. The result with De Lellis was addressing the case of W 1,p velocities, with p > 1, and the upgrade
with Bouchut sets the case in which the derivative of the velocity is a singular integral of a summable function,
including in particular the case of L1 curl. This proves uniqueness, stability and compactness of Lagrangian
solutions to the continuity equation.

In the seminar I will present the main steps in the proofs in the two cases described above. I will also sketch
some possible improvements and extensions and describe some applications.
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I’ll discuss recent results on stability/instability of soliton type solutions for certain critical wave equations, such
as the critical wave maps problem or the focussing critical NLW in three dimensions. In particular, I’ll focus on
exotic blow up dynamics, and threshold dynamics associated with center stable manifolds. These results aim at
the goal of revealing all possible dynamics resulting from data in a small neighborhood (in a suitable topology)
of the soliton type solution.

The author was partially supported by the SNF-grant 200021-13752.
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5 Abstracts of contributed lectures — Monday 15.15–16.15

5.1 Session 1 — Room F — Numerical Methods I

S1 – Numerical Methods I – Room F, 15.15–15.45

Finite volume evolution Galerkin schemes for wave propagation in heterogeneous
media

Koottungal Revi Arun
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen,

Germany.
arun@igpm.rwth-aachen.de

The propagation of hyperbolic waves in heterogeneous media arises in the modelling of several physical phe-
nomena, e.g. the traffic flow with varying conditions, acoustic or elastic waves in heterogeneous materials, to
name a few. In many fields of applications, such as the exploration seismology, one studies the propagation
of small amplitude man made waves in earth and their reflection off geological structures. Here, the hope is
to determine the underlying geological configuration from the available measurements at the surface. In such
cases new phenomena can appear since reflections of waves at interfaces can lead to discontinuities in the wave
speeds, even for linear equations. For related works dealing with the numerical modelling of wave propagation
in heterogeneous media we refer the reader, e.g. to [1] and the references therein.

In the present work we use the finite volume evolution Galerkin (FVEG) method to model the propagation
of acoustic waves in a heterogeneous material with spatially varying wave speeds and impedance. The FVEG
method, originally developed by Lukáčová and coworkers, cf. e.g. [2,3,4,5], is a predictor-corrector method
combining a finite volume corrector step with an evolutionary predictor step. In order to evolve fluxes along
the cell interfaces a multidimensional approximate evolution operator which takes into account of the infinitely
many directions of wave propagation is used. The latter is constructed using the theory of bicharacteristics
of multidimensional hyperbolic systems. In the previous works of Lukáčová and others, cf. [3,4], the evolution
operator was derived only for locally linearised systems where the bicharacteristics reduce to straight lines.

The goal of this work is to derive the FVEG scheme for linear hyperbolic systems with spatially varying
Jacobians without any local linearisation as also done in [6]. Due to the space dependence of the material
parameters and any nonzero velocity field in the ambient medium, the bicharacteristics no longer remain straight
lines. This introduces new difficulties in the derivation of the exact integral representation as well as in the
numerical approximation. We overcome these difficulties and present a systematic derivation of the FVEG
scheme; particularly for an acoustic wave equation system with space dependent wave speeds and impedance.
However, the results presented here are general and hence they can also be employed for any quasi-linear
hyperbolic system of first order.

Using the general theory of bicharacteristics we derive exact solution evolution operators for the wave
equation system and approximate them using quadratures. We show that in order to obtain stable non-
oscillatory results it is appropriate to approximate the heterogeneous medium by a staggered grid that is
assigned to the vertices of a finite volume grid. However, the conservative variables are collocated on a non-
staggered grid. We present several numerical experiments for wave propagation with continuous as well as
discontinuous wave speeds that confirm the accuracy, robustness and reliability of the new FVEG scheme.
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[5] M. Lukáčová-Medvidová, S. Noelle, M. Kraft, Well-balanced finite volume evolution Galerkin methods
for the shallow water equations, J. Comp. Phys., 221 (2007), pp. 122-147.
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Convergence of finite difference scheme for symmetric Keyfitz-Kranzer system
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In this talk, we consider the Cauchy problem for the n× n symmetric system of Keyfitz-Kranzer type

{
ut + (uφ(|u|))x = 0, x ∈ Ω = R× (0, T ),

u(x, 0) = u0(x), x ∈ R,
(1)

where T > 0 is fixed, u =
(
u(1), . . . , u(n)

)
: R × [0, T ) → Rn is the unknown vector map with |u| =√

u(1)2 + · · ·+ u(n)2, u0 =
(
u(1)
0 , . . . , u(n)

0

)
the initial data, and φ : R → R is given (sufficiently smooth)

scalar function. This type of system is a model system for some phenomena in magnetohydrodynamics, elastic-
ity theory and enhanced oil-recovery. We propose an upwind semi discrete finite difference scheme and prove
the convergence of the approximate solution to the weak solution of (1). We also test our numerical scheme
and provide some numerical results.

Joint work with: Nils Henrik Risebro (University of Oslo).
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5.2 Session 2 — Room D — Navier-Stokes and Euler Equations I

S2 – Navier-Stokes and Euler Equations I – Room D, 15.15–15.45

Incompressible Limit of the
Linearized Navier–Stokes Equations

Nikolay Anatolievich Gusev
Moscow Institute of Physics and Technology
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Let D ⊂ Rd be a bounded domain with a piecewise-smooth boundary ∂D, d ∈ N. Let T > 0 and denote
DT = D × [0, T ].

Consider a fluid with linear equation of state / = /0+αp where p and / denote the pressure and the density
respectively, α > 0, ρ0 > 0. (Such form of equation of state was suggested in [1] for low compressible fluids.)
The linearisation of the Navier–Stokes equations for such fluid in the neighbourhood of an incompressible state
(/0,b, p) with constant density /0, divergence-free velocity b : DT → Rd and pressure p can be written as

ρt + div (bρ) + divu = 0, ρ = αp,

ut + (b,∇)u+ (u,∇)b+∇p = ν∆u+ κ∇divu− ρ(bt + (b,∇)b),
(1)

where ν > 0, κ ≥ 0. The unknowns in the equations (1) are the fields u : DT → Rd, ρ : DT → R and
p : DT → R, which are proportional to the variations of the velocity, density and pressure respectively.

Consider the following initial and boundary conditions for (1):

u|t=0 = u◦, u|∂D = 0, p|t=0 = p◦. (2)

The problem (1)–(2) is usually studied when b ≡ 0 (see, e.g., [2,3]). I will briefly present the results (obtained
in [4]) on existence and uniqueness of weak solutions to (1)–(2) in general case (b 3≡ 0) and then I will focus on
passage to the limit in (1)–(2) as α → 0. Sufficient conditions for weak and strong convergence of the “velocity”
u and the “pressure” p (in L2(0, T ;H1

0 ) and L∞(0, T ;L2) respectively) will be presented and compared against
the well-known results for the Navier–Stokes equations, obtained in [5,6] and other papers. The necessity of
these sufficient conditions will be demonstrated using explicit solutions to (1)–(2), which are available for some
special simplified data.
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S2 – Navier-Stokes and Euler Equations I – Room D, 15.45–16.15

Dynamical stability of non-constant equilibria for the compressible Navier-Stokes equations in
Eulerian coordinates

Matthias Kotschote
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In this talk we show global existence and uniqueness of strong solutions to the isothermal compressible Navier-
Stokes equations. The initial data have to be near equilibria which may be non-constant due to considering
large external forces. We are able to prove exponential stability of equilibria in the phase space and, above
all, to study the problem in Eulerian coordinates. The latter seems to be a novelty, since in earlier works
strong Lp-solutions are studied only in Lagrangian coordinates; Eulerian coordinates have even been declared
as impossible to treat, cf. on p. 418 in [1]. The proof is based on a careful study of the associated linear
problem.
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5.3 Session 3 — Room H — Numerical Methods II
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ADER-schemes for networks of 1D hyperbolic equations

Raul Borsche
Technische Universität Kaiserslautern
borsche@mathematik.uni-kl.de

In the last years numerical methods of high order, such as ADER-schemes [1], have been developed. In the
following we present an extension of such methods to networks of 1D hyperbolic equations. Networks of this
type are, e.g. gas-pipelines, sewer-systems, roads or supply chains. A single junction of such networks can be
described by {

ut + f(u)x = 0 , x > 0

Φ(t, u(t, 0)) = 0,

where u contains the states of all connected arcs and Φ represents the coupling conditions [3]. Solving this
system numerically, a regular ADER-scheme can be applied in cells apart from the junction. In the vicinity of
x = 0 we extend the spatial information over the boundary by an approach similar to [2] . For the overlapping
stencils of WENO reconstruction [4] we determine the missing data by first applying the Cauchy-Kowalewski
procedure, computing the temporal derivatives of the coupling conditions and then re-transforming these by an
inverse Cauchy-Kowalewski procedure. The assumptions needed for these steps match with the requirements
for the well-posedness of the coupling conditions [2]. The accuracy of the resulting method is studied in different
numerical examples.
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Entropy-stable discontinuous Galerkin finite element method with streamline
diffusion and shock-capturing

Andreas Eduard Hiltebrand
Seminar for Applied Mathematics, ETH Zurich, Zurich, Switzerland

andreas.hiltebrand@sam.math.ethz.ch

We consider conservation laws in multiple spatial dimensions, e.g. in two dimensions:

ut + f(u)x + g(u)y = 0

in a spatial domain D and with t in [0, T ] together with suitable boundary conditions. u is the unknown vector
of conserved quantities and f resp. g is the flux function in x resp. y-direction.

The spatial elements are denoted Tj with j ∈ J , while In = [tn, tn+1] is the temporal grid with n ∈
{0, . . . , N − 1}, t0 = 0 and tN = T .

We work in entropy variables (entropy symmetrisation): Choose an entropy function S(u), then the entropy
variables v are given by v = Su; so u is a function of v. The semilinear form for the space-time discontinuous
Galerkin finite elements method is

BDG(v, w) = −
N−1∑

n=0

∑

j∈J

∫

In

∫

Tj

(u · wt + f(u) · wx + g(u) · wy)dxdt

+
N−1∑

n=0

∑

j∈J

∫

Tj

(u(tn+1
− ) · w(tn+1

− )−u(tn−) · w(tn+))dx

+
N−1∑

n=0

∑

j∈J

∑

i∈Nj

∫

In

∫

∂Tij

H(u−, u+;nij) · w−dSdt

where Nj are the indices of neighbouring cells of cell j, ∂Tij is the common boundary of cell i and j and nij is the
outward normal of cell j. The numerical flux H is chosen to be entropy-stable, i.e. it is an entropy-conservative
flux [4] together with a numerical diffusion (Rusanov diffusion mostly). Using this form in the weak formulation
already ensures entropy stability and a (formally) arbitrarily high order. But as we are interested in solutions
with shocks we have to deal with spurious oscillations at discontinuities.
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Therefore, we include a streamline-diffusion and a shock-capturing term [2,3], where the streamline-diffusion
term gives some control on the residual while the shock-capturing leads to additional diffusion at shocks. The
streamline diffusion term is

BSD(v, w) =
N−1∑

n=0

∑

j∈J

∫

In

∫

Tj

(uvwt + f(u)vwx + g(u)vwy) ·Drdxdt

where D = hI, r = ut + f(u)x + g(u)y is the residual and h is the mesh width. The shock-capturing term is

BSC(v, w) =
N−1∑

n=0

∑

j∈J

∫

In

∫

Tj

εnj (ut · wt + ux · wx + uy · wy)dxdt

It adds diffusion proportional to εnj which is an integral quantity of the norm of the residual r normalized by
the norm of the gradient of u.

Choosing the space of test and trial functions V (piecewise polynomials) this leads to the weak formulation:
Find v ∈ V such that

∀w ∈ V : BDG(v, w) +BSD(v, w) +BSC(v, w) = 0

Note that because the streamline diffusion and the shock-capturing terms are non-negative for w = v entropy
stability carries over to this formulation.

We investigate the convergence properties of the method theoretically and experimentally for a range of
problems. In particular we have solved the linear advection equation, Burgers’ equation, the wave equation and
the Euler equations in one or two spatial dimensions (cf. [1]).
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Entropy-Stable Path-Conservative Numerical Schemes.

Manuel J. Castro Dı́az
Universidad de Málaga. Dpto. Análisis Matemático
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In [4] Tadmor introduced a sufficient condition for the numerical flux of a conservative method to be entropy-
preserving. The goal of this work is to generalize this theory to strictly hyperbolic nonconservative systems of
the form

ut +A(u)ux = 0, x ∈ R, t > 0, (1)

equipped with an entropy pair, i.e. a pair of functions (η, q), η being convex, such that

∇q(u) = ∇η(u) ·A(u), ∀ u ∈ Rn.

More precisely, the goal is to design semi-discrete path-conservative numerical schemes

d

dt
ui +

1

∆x
(D+

i−1/2 +D−
i+1/2) = 0

(see [3]) that are entropy-preserving in the following sense: there exists a consistent numerical entropy flux
Qi+1/2 such that the numerical solutions also satisfy the equation:

d

dt
η(ui) +

1

∆x
(Qi+1/2 −Qi−1/2) = 0. (2)

An entropy-preserving scheme is not expected to be stable in presence of shocks and thus some numerical
viscosity has to be added. What we propose here is to stabilize entropy-preserving path-conservative numerical
schemes by using the physical viscosity of the problem. The resulting methods are expected to overcome, at
least partially, the difficulty of convergence of the numerical solutions to the physical one discussed in [2], [1].
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Numerical coupling between systems of balance laws
and their late-time asymptotic behavior

Clément Cancès
LJLL – UPMC Paris 06
clement.cances@upmc.fr
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Some hyperbolic systems of balance laws with highly dissipative source terms

ε∂tU
ε + ∂xF (U ε) =

1

ε
R(U ε) + S(U ε), (1)

may satisfy in the late-time limit ε → 0 a parabolic equation of the form

∂tu+ ∂x (f(u)− ∂xφ(u)) = 0. (2)

We refer to [1] and [2] for example of models leading to such an asymptotic.
Firstly, we discuss the design of asymptotic preserving Finite Volume schemes based on the HLL formalism [3]

following the method proposed in [1,4,5], with a particular emphasis on the simple case of the barotropic gas
dynamics.

Then it can be relevant, as for example in the case of model adaptation [5], to couple spatially the “finer”
model (1) with the coarser one (2). A method for deriving relevant coupling conditions between the scheme is
then proposed.
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Governing equations and discretization in conservative form for atmospheric
models

Ivar Lie
StormGeo, Bergen, Norway
Ivar.Lie@stormgeo.com

We consider the governing equations for atmospheric models, which in essence consists of the Euler equations
and transport equations for the thermodynamic variables and the moist variables. The usual formulations of
these equations are derived from conservation principles and a general transport theorem. These basic principles
are formulated in integral form, and the PDEs are derived using integral theorem like the divergence theorem.

In this paper we use the governing equations in integral form, hence using the basic principles as they are.
There are several advantages of doing this:
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• Explicit expression for conservation

• Integral operators are much ”nicer” than differential operators.

• It is easy (and natural) to use finite volume methods so one has discrete conservation

• Conservative time discretization can be constructed easily.

Another important topic is the imposition of boundary conditions. It is well known that the so-called primitive
equations, which in essence are the differential form if the equations consider, are not well-posed with any
classical boundary conditions. However, These results are are for direct imposition of the boundary conditions.
The integral formulation of the equations is using a weak imposition of the boundary conditions, and one can
show that an imposition of transparent lateral boundary conditions in weak form gives a well-posed problem.

The paper will discuss the integral formulation of the governing equations for weather models in general,
see e.g. [1], and use the extensively used WRF model equations [2] as a concrete example. We will show how a
combination of finite volume and mixed finite element discretization can be used in a natural way, and present
some conservative time discretization schemes. The formulation of transparent boundary conditions will be
presented, with an indication of how higher order boundary conditions can be combined with higher order finite
volume methods and mixed finite element methods.
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Multi-Resolution Methods for Quantifying Uncertainties in Geophysical
Applications

Ilja Kröker
University of Stuttgart

Ilja.Kroeker@mathematik.uni-stuttgart.de

Let us consider for T > 0 the following model problem in the open set D ⊂ R2 and probability space (Ω, P )
{
St + div(vsf(S)) = 0 in D × (0, T )× Ω,

S(x, 0) = S0(x) in D.
(1)

Here S : D× [0, T )×Ω → [0, 1] is the unknown saturation of the wetting liquid. The non-linear fractional flow
function f and the initial saturation S0 of the wetting fluid. A random perturbation is given by the velocity
field

vs = (v1 + ξ(ω), v2)t

with a uniformly distributed random variable ξ. The given velocity field vs = vs(x) satisfies

div(vs) = 0 in D × Ω. (2)

We understand (1) as a model problem as it ocurs in e.g. porous media flow or sedimentation. The well
known Monte-Carlo method can be applied to (1) but requires especially in two or more space dimensions,
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high computational effort to quantify the uncertainty. The Polynomial Chaos (PC) stochastic discretisation see
e.g. [1], [3] is one way to quantify uncertainty but leads to a high dimensional hyperbolic system. A further
application of PC method on an hyperbolic problem is given in [4]. The numerical solution of this system is
less expensive then the Monte-Carlo method but it still challenging. We suggest a multi-resolution stochastic
discretization a further improvement of the PC-discretization. This approach is similar to the method in [2]
applied to problems with randomly perturbed initial values.

In this work we consider the application of a second order finite-volume numerical scheme with the multi-
resolution stochastic discretization on (weakly) hyperbolic problems with a randomly perturbed nonlinear flux
in one and two space dimensions. Furthermore we discuss advantages of the multi-resolution approach from the
point of view of parallel computing.

We present numerical examples of the application of the method on the random perturbed quarter five-spot
problem (1), (2) and sedimentation problem.
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Loss of strict hyperbolicity and Riemann solutions for vertical three-phase flow in
porous media

Panters Rodriguez-Bermudez
Instituto Nacional de Matemática Pura e Aplicada (IMPA)

panters@impa.br

Systems of conservation laws modeling three-phase flow in porous media typically fail to be strictly hyperbolic.
This is the case for horizontal one-dimensional convective flow, where this failure occurs at four umbilic points:
the three vertices of the saturation triangle and an interior point [1], [2]. When gravity is considered, the
situation can be even more complex.

We study the hyperbolicity for systems of two conservation laws, which model vertical three-phase flow,
where both gravity and convection are considered. Besides the above mentioned umbilic points, we found new
types of points where characteristic values coincide, located at the boundary of the saturation triangle. We
have characterized these points using Schaeffer-Shearer cones [4].

For the particular case where convection is negligible, we present the structures of Riemann solutions in
terms of fluid density differences. It turns out that these structures are organized around the special cases
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where two of the fluids have equal densities [3]. In such cases there appears a whole edge of the saturation
triangle along which the Jacobian is a multiple of the identity. For certain Riemann data such edges represent
contact waves in the solution.
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Multiple Species Mixing at High Reynolds Number

James Glimm
Stony Brook University
glimm@ams.sunysb.edu

We study the multiple species Navier-Stokes equation in the limit of high Reynolds number. Acceleration
driven flows of this nature define the classical Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We have
achieved systematic agreement across many experiments for the overall growth of the mixing region, based on
the following two algorithmic features:

1. tracking, or some lagrangian dynamics at regions of large solution gradients, to avoid Eulerian advection
mass diffusion,

2. dynamic (parameter free) subgrid models to account for turbulence of unresolved scales.

Built on this capability, we have reached a number of conclusions:

• uncertainty regarding initial conditions is a minor issue for most but not all experiments;

• the growth rate of the mixing layer is not universal;

• mixing flow properties show only a mild Reynolds number dependence in the range from the experimental
value 35,000 to infinite Re.
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The molecular properties of the mixture are described by probability density functions (PDFs). We show norm
convergence of the indefinite integral of these, the cumulative distribution functions (CDFs). A formulation of
w* convergence as Young measures was applied to LES turbulent solutions to express these facts. A theoretical
description of this high Re limit was analyzed [1] on the basis of assumed Kolmogorov 1941 statistics. K41 is
equivalent to a Sobolev inequality of fractional order, and allows convergence of the incompressible Navier-Stokes
equations to a limiting solution of the Euler equations. Likewise, these equations coupled to passive scalars
converge w* to a limit which is a Young measure. Taking a renormalization group (RNG) point of view, we
expect the compressible Euler equations with n species to have n+1 RNG fixed points, nonunique solutions of
the multispecies Euler equations, with the distinct solutions labeled by turbulent Schmidt and Prandtl numbers
and a bulk to shear viscosity ratio.

Contributions of collaborators are gratefully acknowledged.
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Time-asymptotic interaction of flocking particles and an incompressible viscous
fluid

Young-Pil Choi
Department of Mathematical Sciences, Seoul National University

freelyer@snu.ac.kr

In this talk, we present a new coupled kinetic-fluid model for the interactions between Cucker-Smale(C-S)
flocking particles and incompressible fluid on the periodic spatial domain Td. Let f = f(x, ξ, t) be the one-
particle distribution function at a periodic spatial domain x ∈ Td, ξ ∈ Rd at time t, and u = u(x, t) be the bulk
velocity of fluid. In this situation, our model for C-S particles-fluid reads as follows:

∂tf + ξ ·∇xf +∇ξ ·
[
(Fa(f) + Fd)f

]
= 0, (x, ξ) ∈ Td × Rd, t > 0,

∂tu+ (u ·∇x)u+∇xp− µ∆xu = −d

∫

Rd

Fdfdξ, ∇x · u = 0,
(1)

subject to initial data:

(f(x, ξ, 0), u(x, 0)) = (fin(x, ξ), uin(x)), (x, ξ) ∈ Td × Rd, (2)

where µ is the kinematic viscosity of the fluid, and Fa, Fd denote the alignment(flocking) force and drag force
per unit mass, respectively:

Fa(f)(x, ξ, t) :=

∫

Td×Rd

ψ(|x− y|)(ξ∗ − ξ)fdξ∗dy, Fd(x, ξ, t) := u(x, t)− ξ.

Here, the communication weight ψ : R → R+ satisfies

ψ > 0,
(
ψ(s1)− ψ(s2)

)
(s1 − s2) ≤ 0, ‖ψ‖C1 < ∞. (3)

Our coupled system consists of the kinetic Cucker-Smale equation and the incompressible Navier-Stokes equa-
tions, and these two systems are coupled through the drag force. For the proposed model, we provide a global
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existence of weak solutions and a priori time-asymptotic exponential flocking estimates for any smooth flow,
when the kinematic viscosity of the fluid is sufficiently large. The velocity of an individual C-S particles and
fluid velocity tend to the averaged time-dependent particle velocities exponentially fast.

Joint work with: Hyeong-Ohk Bae (Department of financial engineering, Ajou university), Seung-Yeal Ha (Department of

mathematical sciences, Seoul national university), Moon-jin Kang (Department of mathematical sciences, Seoul national

university).
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High frequency waves and the maximal smoothing effect for nonlinear scalar
conservation laws

Stéphane Junca
Laboratoire J.A.D., Université de Nice Spohia-Antipolis, UMR CNRS 6621

junca@unice.fr

First, the propagation of well prepared supercritical high frequency waves for entropy solutions of multidimen-
sional nonlinear scalar conservation laws is studied and simplified from [2].
Second, such oscillating solutions are used to highlight a conjecture of Lions, Perthame, Tadmor, (1994), [7],
about the maximal regularizing effect for nonlinear conservation laws. For this purpose, a new definition
of nonlinear flux is stated and compared to classical definitions, see [1,2,3,5,7]. Then it is proved that the
smoothness expected by [7] in Sobolev spaces cannot be exceeded.
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5.8 Session 8 — Room B — Reaction-Convection-Diffusion Equations
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On the well-posedness of Entropy Solutions to the Degenerate Parabolic Equation
with a zero-flux boundary condition

Mohamed Karimou Gazibo
University of Franche-Comte
mgazibok@univ-fcomte.fr

We consider the general degenerate hyperbolic-parabolic equation:

(P )






ut +∇.f(u)−∆φ(u) = 0 in Q =]0, T [×Ω,

u(0, x) = u0(x) in Ω,

(f(u)−∇φ(u)).η = 0 on Σ =]0, T [×∂Ω. ,

where Ω be a bounded set of RN with a lipschitz boundary ∂Ω and η the unit normal to ∂Ω outward to Ω.
The initial datum u0(x) is a measurable function taking values in [0, umax]. Here φ is a continuous function
non decreasing. Following [2] we assume that f is compactly supported and we define an appropriate notion of
entropy solution. We use a vanishing viscosity approximation and get the a priori estimates useful for passing
to the limit in the approximate problem. The main point for passing to the limit is based on a local compacity
argument (see [3]). In [3], Panov under a local compacity argument on the truncature of approximates solutions
obtains a strong precompactness result of entropy solution. We adapt this result in our case and prove that
the limit of entropy solution of approximate problem is an entropy solution of (P ). We focus on the question
of uniqueness of entropy solution for (P ). Then it is easy to prove uniqueness of solutions such that boundary
condition is satisfied in the sense of strong boundary trace. Unfortunately, we are able to establish this additional
solution regularity only for the stationary problem (S) associate to (P ) and in the case of one space dimension.
Therefore we adapt the hint from the paper [1] and compare a general solution to (P ) with a regular solution
to (S). We conclude by a standard application of the notion of integral solution coming from the nonlinear
semigroup theory . Eventually, we prove the uniqueness result in one space dimension.
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Entropy formulation for forward–backward parabolic equation

Andrea, Terracina
Sapienza Università di Roma
terracin@mat.uniroma1.it

In this talk we consider the following forward–backward parabolic equation

ut = φ(u)xx

where the function φ(u) change monotonicity, this equation has several applications, for instance, in models of
phase separation, image processing and population dynamic.
Obviously the Cauchy problem associated to this equation is ill-posed. In analogy with conservation laws, it
is possible to consider a viscous regularization of the original problem, that agrees with a pseudo–parabolic
approximation of it (see [1]), obtaining an entropy formulation that allows to select a well posed concept of
solution for some class of initial data.
In [2] we consider a piecewise linear diffusion function φ and initial data that takes values only in the stable
regions (where φ is increasing). In this case it is easier to understand the meaning of the entropy condition that
correspond to admissibility condition for the evolution of the interface that separates different stable regions
(again analogy with conservation laws). In this contest we prove local existence and uniqueness. In [3] we
study extension in time of the solution and analyze qualitative properties of the interface between two different
regions.
In this talk we present some recent results obtained in collaboration with F. Smarrazzo in which we study the
singular limit of the pseudo parabolic equation in the case in which φ is nonlinear. When initial data takes
values only in the stable regions, it is possible to prove more accurate estimate for the third order approximation
problem, in particular we obtain a maximum principle for that equation. Using this results, we prove that, for
some classes of initial data, the pseudo parabolic problem with Neumann boundary condition converges strongly
to the solution of the forward–backward Neumann boundary value problem.
This is a first result of existence in the nonlinear case and is also a results of strong convergence of the approx-
imation problem to the original one.
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5.9 Session 9 — Room C — Control Problems for Hyperbolic Equations I
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Nash equilibria for traffic flow on a network

Alberto Bressan
Penn State University
bressan@math.psu.edu

In connection with the Lighthill-Whitham conservation law model of traffic flow, a cost functional can be
introduced, depending on the departure time and on the arrival time of each driver. Under natural assumptions,
there exists a unique globally optimal solution, minimizing the sum of the costs to all drivers.

In a realistic situation, however, the actual traffic is better described by a Nash equilibrium solution, where
no driver can lower his individual cost by changing his own departure time. In the case of a single group of
drivers traveling on the same road, a characterization of the Nash solution can be provided, establishing its
existence and uniqueness.

The talk will also deal with the case of several groups of drivers with different costs, who can choose among
different routes on a network of roads in order to reach destinations. For this case, the existence of at least one
Nash equilibrium can be still be proved.

The issue of stability of Nash equilibria will also be considered, discussing the results of some numerical
simulations.
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Exact controllability of scalar conservation laws with strict convex flux

Shyam Sundar Ghoshal
Tifr-Cam,India

ssghoshal@math.tifrbng.res.in

We consider the following scalar conservation law in one space dimension. Let f : R → R be a strictly convex
C1 function satisfying the super linear growth,

lim
|u|→∞

f(u)

|u| = ∞. (1)

Let T > 0, 0 ≤ δ < T, A < B, I = (A,B), Ω = I × (δ, T ), u0 ∈ L∞(I), b0, b1 ∈ L∞((0, T )) and consider the
problem

ut + f(u)x = 0 (x, t) ∈ Ω, (2)

u(x, δ) = u0(x) x ∈ I, (3)

u(A, t) = b0(t) t ∈ (δ, T ), (4)

u(B, t) = b1(t) t ∈ (δ, T ). (5)

Existence and uniqueness are heavyly understood for the above problem. In spite of being well studied, the
problem for exact controllability (for optimal controllability, see [5]) of initial and initial-boundary value problem
was open for quite a long time. Normally for the non linear evolution equations, technique of linearization is
adopted to study controllability problems. Unfortunately this method does not work (see Horsin [3]) and very
few results are available (see Ancona et al. [1],[2]) on this subject . In this talk we will discuss the following
three problems of controllability. Let u0 ∈ L∞(R) and

Session 9 — Room C — Control Problems for Hyperbolic Equations I



HYP2012 — Book of Abstracts 63

(I) Controllability for pure initial value problem: Assume that I = R,Ω = R × (0, T ). Let J1 =
(C1, C2), J2 = (B1, B2), g ∈ L∞(J1), a target be given. The question is, does there exists a ū0 ∈ L∞(J2)
and u in L∞(Ω) such that u is a solution of (2) satisfying

u(x, T ) = g(x) x ∈ J1, (6)

u(x, 0) =

{
u0(x) if x 3∈ J2,
ū0(x) if x ∈ J2.

(7)

(II) Controllability for one sided initial boundary value problem: Assume that I = (0,∞), Ω =
R × (0, T ), J = (0, C) and a target function g ∈ L∞(J) be given. The question is, does there exists a
u ∈ L∞(Ω) and b ∈ L∞((0, T )) such that u is a solution of (2) satisfying

u(x, T ) = g(x) if x ∈ J, (8)

u(x, 0) = u0(x) if x ∈ (0,∞), (9)

u(0, t) = b(t) if t ∈ (0, T ). (10)

(III) Controllability from two sided initial boundary value problem:

(a). Let Ω = R× (0, T ), I1 = (B1, B2) , B1 ≤ C ≤ B2. Given the target functions g1 ∈ L∞(B1, C), g2 ∈
L∞(C,B2), does there exists a ū0 ∈ L∞(R \ I1) and u ∈ L∞(Ω) such that u is a solution of (2) satisfying

u(x, T ) =

{
g1(x) if B1 < x < C,
g2(x) if C < x < B2.

(11)

and

u(x, 0) =

{
u0(x) if B1 < x < B2,
ū0(x) if x < B1 or x > B2.

(12)

(b). Here we consider controllability in a strip. Let I = (B1, B2), Ω = I × (0, T ), B1 < C < B2. Let
g1 ∈ L∞((B1, C)), g2 ∈ L∞((C,B2)) be given. Then the question is, does there exist b0, b1 ∈ L∞((0, T ))
and a u ∈ L∞(Ω) such that u is a solution of (2) and satisfying

u(x, 0) = u0(x), (13)

u(x, T ) =

{
g1(x) if B1 < x < C,
g2(x) if C < x < B2.

(14)

u(B1, t) = b0(t), (15)

u(B2, t) = b1(t). (16)

Now the question is whether the problems (I), (II) and (III) admit a solution? In fact, it is true and
we have settled all the three problems in the paper [4].

In the case of problem (II), Ancona et al. [1],[2] studied the problem from the point of view of Hamilton-
Jacobi equations and studies the compactness properties of {u(·, T )} when u(x, 0) = 0 and u(·, 0) ∈ U , here U
is a set of controls satisfying some properties.

In our results on controllability, superlinearity of f plays an important role in removing the condition on T
and by creating free regions. Next using convexity and backward construction, we explicitly construct solutions
in these free regions for particular data which allow to obtain solutions for control problems.
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6 Abstracts of contributed lectures — Monday 17.20–19.20

6.1 Session 10 — Room F — Numerical Methods IV

S10 – Numerical Methods IV – Room F, 17.20–17.50

Cartesian grid embedded boundary methods for hyperbolic problems

Christiane Helzel
Ruhr-University Bochum

christiane.helzel@rub.de

We discuss finite volume methods for hyperbolic pdes on Cartesian grids with embedded boundaries. Embedded
boundary methods are very attractive for several reasons: The grid generation is simple even in the presence of
complicated geometries. Furthermore, such an approach allows the use of regular Cartesian grid methods away
from the embedded boundary, which are much simpler to construct and more accurate than unstructured grid
methods. In embedded boundary grids with cut cells adjacent to the boundary, the cut cell volumes can be
orders of magnitude smaller than a regular Cartesian grid cell volume. The use of standard difference procedures
would lead to an unacceptably small integration timestep. Both accuracy and stability are issues that need to
be addressed at these highly irregular cut cells adjacent to solid bodies. The goal is to construct a method
which is stable for time steps that are appropriate for the regular part of the mesh and at the same time do not
lead to a loss of accuracy. Several different ideas to overcome the small cell problem in an embedded boundary
approach have been proposed in the literature and will briefly be discussed in the talk.

Our approach is based on constructing fluxes at cut cells in such a way that a certain cancellation property
is satisfied. It means that flux differences must be of the order of the size of the small grid cell. This can be
obtained by introducing h-boxes (i.e., boxes of the length of a regular grid cell) at cut cell interfaces (see [1]).
More recently (see [2]) we have constructed embedded boundary methods in the context of the method of lines
which led to several simplifications compared to the previous approach. This simplified h-box method will be
presented in the talk. Our current goal is to extend the method to higher than second order. Preliminary results
in this direction will also be presented.
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S10 – Numerical Methods IV – Room F, 17.50–18.20

Comparison of WENO scheme and high-order WENO-gas-kinetic scheme for
inviscid and viscous flow simulation

Jun Luo
Mathematics Department,

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

maluojun@ust.hk

Computational Fluid Dynamics has made great progress in 1970s and 1980s due to the development of the
concept of nonlinear limiter and the characteristic wave decomposition of the Euler equations. Due to its
accuracy, robustness, and efficiency, the 2nd-order schemes become the working horses in almost all practical
engineering applications at the current stage. On the other hand, as the increasing of computer power and
the requirement for accurate solutions for more challenging problems, such as compressible turbulent flow and
aero-acoustics, high-order methods become good choices. Over the past two decades, significant progress has
been made in the designing of high-order numerical methods in the computational fluid dynamics. To go beyond
second-order accuracy, a high degree of sophistication is required to determine the additional degree of freedom
in the high-order methods. There are at present several approaches that fulfil some of the basic requirements.
Examples include the weighted essentially non-oscillatory (WENO) method and the discontinuous Galerkin
(DG) Finite Element methods. Among high order schemes, the WENO may be the most reliable one for
the fluid motion with both continuous and discontinuous wave structures. The WENO scheme introduces an
accurate and robust reconstruction methods for the discrete numerical data.

In this paper, based on the same WENO reconstruction, for the first time we are going to compare the effect
of the flux functions on the numerical accuracy for both the Euler and Navier-Stokes solutions. The compared
schemes are the standard fifth-order WENO method and the WENO-Gas-kinetic scheme. The fifth-order finite
difference WENO scheme uses the Steger-Warming flux splitting for inviscid parts, the sixth-order accurate
central difference for viscous terms, and three stage Runge-Kutta time stepping for the time evolution. The
finite volume WENO-GKS uses the same WENO reconstruction for the conservative variables, evaluates its
spatial and time evolution of a distribution function based on the solution of the gas-kinetic equation, and
obtains the flow transport across a cell interface by one step integration along the cell interface in both space
and time. The WENO-Steger-Warming scheme(WENO-SW) and WENO-GKS are tested in the following three
cases with different mesh sizes: vortex propagation, Mach 3 step problem, and cavity flow at Reynolds number
3200.

Our results show that both WENO-SW and WENO-GKS yield quantitatively similar results and agree well
with each other, provided a sufficient grid resolution is presented. With reduced mesh points, the WENO-GKS
appears to have less numerical dissipation and gives more accurate solutions than that from the WENO-SW.
For the NS solution, the WENO-GKS couples invscid and viscous fluxes in a single flux evaluation from a
WENO initial reconstruction. However, the WENO-SW separates the treatment of inviscid and viscous terms.
In the cavity flow simulation, the WENO-SW is more sensitive to the boundary treatment. The operator-
splitting discretization of inviscid and viscous terms prevents the explicit WENO-SW from getting steady state
solution, especially in the coarse mesh case. The solution of the WENO-SW is more sensitive to the initial
data reconstruction. The general conclusion from the numerical comparison is the following. Besides high-order
initial reconstruction, an accurate gas evolution model or flux function in a high-order scheme is very important
as well in the capturing of physical solutions. The different numerical treatment of inviscid and viscous terms
in the NS equations may introduce errors in high-order schemes, especially in the cases where there are a few
mesh points in the dissipative physical structure, such as the boundary layer, and with wave interactions. It
will be a challenge to develop a high-order scheme by using operator splitting method to discretize all physical
terms separately. Theoretically, the viscous dissipation, heat conduction and transport are indistinguishable in
a gas evolution process.
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An efficient discretization of the shallow water equations with source terms on
unstructured meshes

Arnaud Duran
Université Montpellier II, I3M, Montpellier, France

Arnaud.Duran@math.univ-montp2.fr

The proposed work concerns the numerical approximation of weak solutions for the shallow water equations
with varying topography and friction source terms, on unstructured meshes.
The discretization of the topography source term is based on a useful reformulation of the classical shallow
water equations, namely the ”pre-balanced” equations:

Ut +∇ ·H(U, z) = S(U, z)− σ(U)R(U), (1)

with

U = t(η, qx, qy) H(U,Z) =




qx qy

uqx + 1
2g(η

2 − 2ηz) vqx
uqy vqy +

1
2g(η

2 − 2ηz)



 and

S(U,Z) = t(0,−gηzx,−gηzy),

where η denotes the water free surface, and qx, qy, u, v are the respective discharges and velocities in the x
and y direction, z a parameterization of the topography variations and σ(U)R(U) an additional friction source
term, which can be for instance the usual Manning-Chezy source term.

The discretization of the topography source term is performed using a two-dimensional generalization of
the well-balanced scheme introduced in [3]. Indeed, the pre-balanced equations (1) allow a simple and robust
discretization of the topography source term. Several extensions of the work introduced in [3] are highlighted.
For the discretization of the friction term σ(U)R(U), we introduce a new method, in the spirit of [2], relying
on a modified Godunov-type scheme that directly account for the friction source term, preserves the robustness
and does not change the CFL condition. A formally high-order extension is also investigated, that does not
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require the introduction of additional source terms to preserve consistency, as done in [1] for instance.

The resulting model provides good properties, including the preservation of motionless steady states, high
accuracy and robustness. These properties are assessed through extensive numerical validations and we show
the capability of our model in dealing with particularly delicate contexts, including wetting and drying with
leading frictional effects. After some academical validations and accuracy/convergence studies, some compar-
isons with experimental data, like the Malpasset dam break data set are performed.
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Numerical Dissipation and Wrong Propagation Speed of Discontinuities For Stiff
Source Terms

Helen C. Yee
NASA-Ames Research Center, Moffett Field, CA, 94035, USA

Helen.M.Yee@nasa.gov

The appearance of stiff source terms in modeling unsteady flows containing turbulence with strong shocks and
finite-rate chemistry/combustion poses difficulties beyond that for solving non-reacting turbulent flows. The
amount and procedure in controlling numerical dissipation in the design of numerical methods can affect the
degree of accuracy in obtaining the correct propagation speed of discontinuities if the source term is stiff.
The dual requirement to achieve both numerical stability and accuracy with zero or minimal use of numerical
dissipation for turbulence with strong shocks and combustion is most often conflicting for existing schemes
that were designed for non-reacting flows. The goal of this paper is to relate numerical dissipations that are
inherited in a selected set of high order shock-capturing schemes with the onset of wrong propagation speed of
discontinuities for two representative stiff detonation wave problems.

Joint work with: Dmitry Kotov (Postdoctoral Fellow, Center for Turbulence Research, Stanford University, CA, 94305

USA), Björn Sjögreen (Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA)
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6.2 Session 11 — Room D — Navier-Stokes and Euler Equations II

S11 – Navier-Stokes and Euler Equations II – Room D, 17.20–17.50

Bounded vorticity, bounded velocity (Serfati) solutions to the incompressible 2D
Euler equations

Helena J. Nussenzveig Lopes
Federal University of Rio de Janeiro

hlopes@im.ufrj.br

In 1963 V. I. Yudovich proved the existence and uniqueness of weak solutions of the incompressible 2D Euler
equations in a bounded domain assuming that the vorticity, which is the curl of velocity, is bounded. This result
was later extended by A. Majda to vorticities which are bounded and integrable in the full plane. A few further
extensions of this result have been obtained, most notably by Yudovich himself and, also, by M. Vishik, always
assuming some decay of vorticity at infinity. In a short note in 1995, Philippe Serfati gave an incomplete, yet
brilliant, proof of existence and uniqueness of solutions to the 2D Euler equations in the whole plane when the
initial vorticity and initial velocity are bounded, without the need for decay at infinity. In this talk I will report
on work in progress aimed at extending Serfati’s result to flows in a domain exterior to an obstacle.

Joint work with: David Ambrose (Drexel University), James P. Kelliher (University of California, Riverside) and Milton

C. Lopes Filho (Federal University of Rio de Janeiro).
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Analysis of Oscillations and Defect Measures in Plasma Physics

Donatella Donatelli
Dipartimento di Matematica Pura ed Applicata

Università degli Studi dell’Aquila, 67100 L’Aquila, Italy
donatell@univaq.it

A simplified model to describe the dynamics of a plasma is given by the coupling of the compressible Navier
Stokes equations with a Poisson equation, where in dimensionless units the coupling constant can be expressed
in terms of a parameter λ which represents the scaled Debye length, namely






∂sρλ + div(ρλuλ) = 0

∂s(ρλuλ) + div(ρλuλ ⊗ uλ) + 1
γ∇(ρλ)γ = µ∆uλ + (ν + µ)∇divuλ + ρλ∇V λ

λ2∆V λ = ρλ − 1.

In many cases the Debye length is very small compared to the macroscopic length and so it makes sense to
consider the quasineutral limit λ → 0 of the system. The velocity of the fluid then evolves according to the
incompressible Navier Stokes flow. This type of limit has been studied by many authors in the framework of
smooth solution or well-prepared initial data. However there is no analysis for the quasineutral limit for the
Navier Stokes Poisson system in the contest of weak solutions and in the framework of general ill prepared
initial data. The common feature of this kind of limits in the ill prepared data framework is the high plasma
oscillations, namely the presence of high frequency time oscillations of the acoustic waves. Another issues which
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makes the limiting behaviour analysis very hard is the presence of very stiff terms due to the electric field
E = ∇V . We show in different domains (whole space, periodic domains) that, as λ → 0, the velocity field
strongly converges towards an incompressible velocity vector field and the density fluctuation weakly converges
to zero. In general the limit velocity field cannot be expected to satisfy the incompressible Navier Stokes
equation, indeed the presence of high frequency oscillations strongly affects the quadratic nonlinearities and we
have to take care of self interacting wave packets. We shall provide a detailed mathematical description of the
convergence process by using microlocal defect measures and by developing an explicit correctors analysis.
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A Low Mach Number Limit of a Dispersive Navier-Stokes System

Konstantina Trivisa
University of Maryland
trivisa@amsc.umd.edu

This work establishes a low Mach number limit for classical solutions over the whole space of a compressible
fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system
is a ghost effect system [[5]]. This type of systems cannot be typically derived from the Navier-Stokes system
of gas dynamics, instead they can be formulated using concepts from kinetic theory. This work is part of a
program that aims to identify fluid dynamic regimes and to construct a unified model that captures them.
Such a model can also be useful in transition regimes where classical fluid equations are inadequate to describe
the dynamics of fluids while computations using kinetic models are expensive. The analysis builds upon the
framework developed by Métivier and Schochet [[4]] and Alazard [[1]] in the context of non-dispersive systems.
The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast
motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion.

This is joint work with D. Levermore and W. Sun.
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Low Mach number limit for the compressible viscous magnetohydrodynamic
equations

Fucai Li
Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China

fli@nju.edu.cn

Magnetohydrodynamics (MHD) studies the dynamics of compressible quasineutrally ionized fluids under the
influence of electromagnetic fields. The applications of magnetohydrodynamics cover a very wide range of
physical objects, from liquid metals to cosmic plasmas. In this talk we report our recent results on on the
low Mach number limit for the compressible viscous magnetohydrodynamic (MHD) equations including the
isentropic and non-isentropic cases. For the isentropic MHD equations, we consider the low Mach number limit
in the whole space and periodic domain with well/ill-prepared data. For the non-isentropic MHD equations,
we discuss the low Mach number limit in two cases: (i) small variations on density and temperature with well-
prepared initial data; (ii) large variations on density and temperature with ill-prepared initial data. The key
points in the proofs of rigorous results shall be mentioned the talk.
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6.3 Session 12 — Room H — Numerical Methods V

S12 – Numerical Methods V – Room H, 17.20–17.50

Practical CFL conditions for MUSCL schemes
solving Euler equations

Yohan Penel
University Paris 6 (LJLL–LRC MANON)

penel@ann.jussieu.fr

We present a practical method to adapt classical MUSCL schemes on unstructured grids for solving Euler
equations in order to ensure positivity of density and pressure. This issue has been investigated in [1,4,5,7].
Qualitative results have been proven in the aforementioned papers. The aim of the present work is to provide
an explicit and optimized CFL condition. Preserving positivity indeed requires a more restrictive stability
condition. Another adaptation is the reconstruction step where modified limiters are used [2,3] as well as an
additional damping coefficient. To illustrate this approach, we focus on a severe test detailed in [6] where density
and pressure become dramatically small.
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S12 – Numerical Methods V – Room H, 17.50–18.20

A discontinuous Galerkin method for neutron transport equations on arbitrary
grids

Wei Junxia
Institute of Applied Physics and Computational Mathematics, Department 6, NO.2. Fenghaodong Road,

Haidian District, Beijing, 100094, China
wei junxia@iapcm.ac.cn

Time-dependent neutron transport equation is a kind of important hyperbolic partial differential equation in
nuclear science and engineering applications. High dimension neutron transport calculation include computing
of space grid, angle direction, energy group and time step, is very complex and huge scale scientific calculation
problem. Discontinuous finite element discrete ordinates (DFE-Sn) method is very efficient for solution of such
equations especially while concerned with complicated physics including multimedia, larger grid distortion,
complex initial and boundary conditions. We have developed a serial solver with this method for neutron and
photon coupled transport equation under 2-D cylindrical geometry on unstructured triangle or quadrangle grids.
Undoubtedly, the traditional discontinuous Galerkin methods have many distinguished features, however, they
have a number of their own weaknesses.

A discontinuous Galerkin method based on a Taylor basis is presented for the solution of neutron transport
equations on arbitrary grids. Unlike the traditional discontinuous Galerkin methods, where either standard
Lagrange finite element or hierarchical node-based basis functions are used to represent numerical polynomial
solutions in each element, this DG method represents the numerical polynomial solutions using a Taylor series
espansion at the centroid of the cell. As a result, this new formulation has a number of distinct, desirable,
and attractive features and advantages in developing a DG method from a practical perspective, which can be
effectively used to address some of shortcomings of the DG methods. The developed method is used to solve
time-dependent neutron transport equations under 2-D cylindrical geometry on arbitrary grids. The numerical
results obtained by this discontinuous Galerkin method are extremely promising and encouraging in terms of
both accuracy and robustness, indicating its ability and potential to become not just a competitive but simply
a superior approach than the current available numerical methods.
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Exporting numerical schemes from compressible
gas dynamics to elasticity

Knut Waagan
University of Washington
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Elastic materials are modeled by nonlinear hyperbolic conservation laws with complicated constitutive equations.
Efficient numerical techniques have been developed for shocks in gases. We consider the application of such
shock-capturing schemes to nonlinear elasticity. These schemes add dissipative mechanisms that lack proper
invariance under rigid motions, which is shown to lead to large errors. We present a method for imposing
invariant dissipative mechanisms. The result is a rich class of invariant regularizations which may yield new
insight on shock waves in solids, both numerically and theoretically.
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Friedemann Kemm
Brandenburg University of Technology

Institute for Applied Mathematics and Scientific Computing
Platz der Deutschen Einheit 1

03046 Cottbus, Germany
kemm@math.tu-cottbus.de

Session 12 — Room H — Numerical Methods V



HYP2012 — Book of Abstracts 75

The AUFS-scheme [2] by Sun and Takayama is a flux vector splitting scheme without breakdown of discrete
shock profiles, usually called carbuncle, but still with a fine resolution of entropy waves. It is based on a splitting
of the flux vector of the Euler equations already discussed by Steger and Warming [1, p. 271]:

f(q) = uq+P(q) = u




ρ
ρu
E



+




0
p
pu





with the wave speeds for the advective flux uq assumed to be u, u, u and for the central part, the pressure
part, P(q) assumed to be 0,±c with the speed of sound c. Sun and Takayama start from the 2d-version of the
resulting scheme and modify the numerical viscosity to enhance the resolution of entropy waves. Unfortunately,
this does not improve the resolution of shear waves – it is even poorer – but leads to failure of the scheme due to
negative pressure.

We provide possible fixes for both deficiencies by going back to the original viscosity or a Local-Lax-Wendroff
type viscosity and applying a correction for the shear viscosity, based on a symmetric HLLC-type solver for the
pressure flux. We show how this correction term has to be tuned to get a good resolution of shear waves but
no carbuncle.
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We present a novel discretization method for steady-state and time-dependent viscous conservation laws.
These equations are given as

wt +∇ · (f(w)−B(w)∇w) = 0 ∀x ∈ Ω, (1)

subject to appropriate initial and boundary values. One important example and the motivation for the current
work are the compressible Navier-Stokes equations, but there are many other equations that fit into this rather
general framework.

Considering the convective term alone, i.e., B(w) ≡ 0, it is, at least in the one-dimensional or the scalar
case, well-known that solutions have to be sought in a discontinuous function space such as BV (Ω). This has
motivated the use of solution procedures using discontinuous ansatz spaces, such as the Finite Volume [4] or
the Discontinuous Galerkin methods [2].
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Given that the convective term is zero, i.e., f(w) ≡ 0, a model problem for (1) is the heat equation, where
it is known that the solution to be expected is very regular, thus motivating solution procedures that rely on
underlying spaces having some continuity requirement, for example the well-known BDM-spaces [1]. The use
of these spaces is to compute the viscous flux σ := B(w)∇w in a space possessing a (global) divergence, albeit
the approximate gradient itself is allowed to be discontinuous.

In our proposed methodology, we combine a Discontinuous Galerkin method for the convective part and a
BDM-Mixed method for the diffusive part. In a first step toward the combination, both methods are hybridized.
Hybridization means that the approximate solution is expressed in terms of the traces of the solution on the
skeleton of the mesh. This procedure has the advantage of reducing the globally coupled degrees of freedom in
an implicit method. The discretizations are now made compatible, and can in a second step be easily combined
by summing them up.

In the current publications [5,7], we have extensively validated the method for the steady-state case and
showed the fidelity of this approach. For the approximate variable wh, we obtain optimal convergence rates for
both a scalar equation and the compressible Navier-Stokes equations. Further testcases include drag prediction
on a cylinder in comparison to results from the literature, and standard NACA0012-airfoil computations.

If σ is such that there is a one-to-one relation with ∇w, e.g., σ = ε∇w, our method offers the possibility of
postprocessing [8]. Postprocessing enhances the order of L2−convergence of the approximate solution wh toward
w by 1 or even 2 via a cheap, because local, reconstruction procedure. We have elaborated on convergence orders
of both σh and wh in [7].

In [6], we have demonstrated that our proposed method is adjoint consistent [3]. Adjoint consistency is a
key property when using adjoint error control, and is as such desirable.

In this talk, we present both steady-state and time-dependent results, and discuss various mathematical
properties of the proposed Hybrid Mixed method, such as the adjoint consistency property. The extension of
already existing (steady-state) code to time-dependent problems can, given the fact that we solve the steady
system using an implicit Euler method, be done via dual timestepping. We will, however, also consider other
possible time discretizations.
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A numerical scheme for the pressureless gases system

Laurent Boudin
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The one-dimensional pressureless gases system has been widely investigated since [1]. For instance, it can
be seen as a simplified model of galaxies dynamics in astrophysics or appears in the study of cold plasmas. For
T > 0, the gas density ρ(t, x) ≥ 0 and the momentum q(t, x) ∈ R solve the following equations, in ]0, T [×R,

∂tρ+ ∂x(ρu) = 0,

∂tq + ∂x(qu) = 0,

which happen to respectively be conservation laws on mass and momentum. The velocity u(t, x) ∈ R which
appears in the fluxes must be somehow defined as a quotient of q by ρ. However, this is not always possible,
since ρ can be zero. A key contribution about the pressureless gases is the work of Bouchut and James [2].
They pointed out the importance of the OSL (one-sided Lipschitz) condition: ∂xu ≤ 1/t.

We here tackle the question of discretizing the pressureless gases system, as more precisely described in [4].
We first prove that the upwind scheme, standardly used for conservation laws, cannot provide the solution to
the system, since u, built as q/ρ, cannot satisfy the OSL condition. We then provide a numerical scheme based
on the viscous pressureless gases system [3] and preserving, among other properties, the discrete OSL condition,
see [5].
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Large time step and asymptotic preserving numerical schemes for the gas
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We are interested in the simulation of subsonic compressible flows in a specific regime where the (main)
driving phenomena are stiff source terms and material transport. More precisely, we consider the system of gas
dynamics with external body forces and friction






∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = ρ(g − αu),
∂t(ρE) + ∂x((ρE + p)u) = ρu(g − αu),

(1)

where ρ, u and E denote the density, the velocity and the total energy of the fluid, g the gravitational acceleration
and α the friction parameter. The pressure law p = p(ρ, e) is assumed to be a given function of the density

ρ and the internal energy e defined by e = E − u2

2 . Such flow configuration may be encountered in several
industrial processes like the flows involved within the core of a nuclear power plant. We propose a large time
step and asymptotic preserving scheme for the gas dynamics equations with external forces and friction terms.

By asymptotic preserving, we mean that the numerical scheme is able to reproduce at the discrete level
the parabolic-type asymptotic behaviour satisfied by the continuous equations [2]. Indeed, when one considers
the asymptotic regime obtained for both long time and large friction coefficients, the solution of the system is
formally expected to behave like the solution of a typical parabolic system






∂t′ρ+ ∂x(ρu1) = 0,
∂xp = ρ(g − αu1),
∂t′(ρe) + ∂x((ρe+ p)u1) = ρu1(g − αu1),

(2)

where u = εu1 +O(ε2). We aim at deriving a scheme that preserves this property for the discrete approximate
of the solution.

By large time-step, we mean that the scheme is stable under a CFL stability condition driven by the (slow)
material waves, and not by the (fast) acoustic waves as it is customary in Godunov-type schemes. We propose a
mixed implicit-explicit strategy: the terms responsible for the acoustic waves receive a time implicit treatment
while the ones responsible for the transport waves are treated by an explicit update. This task is achieved by
means of a Lagrange-Projection algorithm as in [3]. An approximation based on a relaxation strategy [4, 1, 5]
provides a simple mean to circumvent the nonlinearities involved with the equation of state of the fluid.

Numerical evidences are proposed and show a gain of several orders of magnitude in both accuracy and
efficiency.
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Geometrical Treatment of Geometrical Shock Dynamics

Philip Lawrence Roe
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Geometrical Shock Dynamics (GSD) was introduced by Whitham in 1957 [1] to predict the behavior of a
shockwave propagating into a stationary medium. It is a semi-empirical theory that enjoys a surprising degree
of practical success. The derivation employs largely geometrical arguments, but can also be formulated as a
2× 2 set of hyperbolic conservation laws. The output is the history of the shock front in the form x(ξ, t) where
t is time and ξ measures distance along the shock front. A few simple solutions can be found very directly but
more generally a numerical procedure is required. Even then, the simplicity of the equations and the reduction
of dimensionality make the method much less costly than, for example, solving the unsteady Euler equations,
particularly for propagation over large distences.

Extensions of the method to (a) propagation into moving media [3], or (b) propagation in three dimensions
[2], have abandoned these simple formulations in favor of finding a function α(x) where α is the time of
arrival. This reformulation leads to less accurate solutions, loses the reduction in dimensionality, lacks a clean
interpretation, and fails for the case of a shock that passes the same location more than once. We will show that
this reformulation was not necessary, and that very efficient algorithms are got by applying modern methods
for hyperbolic conservation laws. The construction remains geometric, supplemented by solutions to Riemann
problems.

For the two-dimensional case, the interaction between a shockwave and a cylindrical vortex will be considerd,
and compared with Euler solutions. The three-dimensional extension is particularly interesting, as it is closely
isomorphic with Lagrangian fluid dynamics, and promotes a reexamination of Godunov-type methods in that
context.
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Split-explicit time integration methods in numerical weather prediction
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Split-explicit integration methods are common time integrators in Eulerian based weather forecast models.
In the talk we will give an overview about different types of integrators which are based on Runge-Kutta,
multistep and peer integration methods. The methods are compared with respect to their order, stability
regions and efficiency. Especially we propose a generalized ansatz of split-explicit integration methods which
combine an explicit Runge-Kutta method for the slow wave part and an integrator of your choice for the fast
part. The classical RK3 method of Wicker and Skamarock belongs to this class of methods. Order conditions up
to order three are derived. For deriving special schemes an optimization problem is formulated which includes
as constraints the order conditions and stability restrictions with respect to the linear shallow water equation.
The optimization goal is a minimal number of fast wave integration steps. A three stage second order method is
obtained, whose underlying Runge-Kutta method has the classical order three. Furthermore a four stage method
has been constructed which is of order three for the full Euler equation. Numerical examples are presented for
implementations in the atmospheric models ASAM and WRF.
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Well-balanced simulation of geophysical flows via the Shallow Water Equations
with bottom topography: Consistency and Numerical Computation
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The shallow water equations are a simplified mathematical model for incompressible free-surface flows that
can be used for the simulation of geophysical problems (tsunamis, avalanches etc.). Especially in large domains,
where the consideration of the full model would be computationally too demanding, it is convenient to make use
of such simplified models. The system of conservation/balance laws is expressed in terms of the water height h
and the depth-averaged horizontal momentum hu and reads

∂th+∇ · (hu) = 0 in Ω× [0, T ]

∂t(hu) +∇ ·
(
hu⊗ hu

h
+

g

2
h2Id

)
= −gh∇b in Ω× [0, T ],

(1)
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where s = s(x, t) denotes the position of the free surface, b = b(x) the bottom profile, h = h(x, t) = s(x, t)−b(x)
the water height, u = u(x, t) the velocity and g the gravitational constant. Usually, the computational domain
Ω is a subset of the horizontal plane, but we also consider the shallow water equations on the sphere S2 as a
model for global atmospheric flows (e.g. weather forecast, propagation of tsunamis).

For the numerical computation we consider finite volume schemes of higher order. Since classical schemes
do not preserve the stable lake at rest state (s =const and u ≡ 0) for a non-flat bottom topography, the
well-balancing strategy described in [2] is applied to the finite volume scheme. This strategy is based on a
hydrostatic reconstruction, i.e. a modification of the arguments of the numerical flux function. One main focus
of this talk is to show that under certain assumptions the order of consistency of the first order scheme (in 1D)
is not affected by the modification.

In our simulations with real bottom topography, previously wet regions may drain with time or, conversely,
dry regions may be filled with water. Since this can lead to instabilities/unphysical water heights, we employ,
additionally to the well-balancing, a wetting and drying strategy proposed by [3]. The numerical simulations
were performed in parallel.

For the shallow water equations on the rotating sphere, one has to modify the system (1) in order to take
into account Coriolis force due to the rotation of the Earth and the fact, that momentum should be tangential
to the sphere (see e.g. [5]). We propose a finite volume scheme that is based on a discrete parallel transport of
the momentum before being put into the numerical flux function. For our simulations we use the real bottom
topography of the earth [1] and a surface displacement caused by an asteroid impact [4] as initial values. The
numerical code for surfaces also enables us to replace the shallow water equations with another hyperbolic
equation (e.g. Euler equations of gas dynamics) and to replace the computational domain (e.g. sphere with
torus).
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Adaptive large time step FV and DG methods for some geophysical flows
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A characteristic feature of many geophysical flows is their multiscale behaviour with wave speeds differing by
orders of magnitude. If explicit time discretization is used for numerical approximation to a governing system
that supports multiscale waves, the maximum stable time step will be limited by wave speed of the most rapidly
propagating waves. In order to obtain a reasonably efficient numerical model for simulation of geophysical flows
(e.g. atmospheric circulation), it is necessary to circumvent the stability constraint associated with acoustic
waves and put the stability limit into closer agreement with the time step limitations arising from accuracy
considerations. In [2] we have derived two types of the large time step finite volume evolution Galerkin (FVEG)
scheme; the explicit as well as fully implicit scheme. We use here the theory of bicharacteristics yielding a
multidimensional evolution operator, which can be interpreted as a multidimensional approximate numerical
flux. Numerical simulations confirm the efficiency of the explicit large time step scheme, while the fully implicit
approach yielding in some cases more robust scheme is quite costly.

Recently we are working in collaboration with the colleagues from meteorology, [3], on the development of
new linear semi-implicit large time step FVEG schemes and Discontinuous Galerkin EG (DGEG) schemes. The
fully nonlinear flux is splitted into a linear part governing the fast waves and the rest nonlinear part governing
the convective waves. In order to omit the strict stability condition dictated by fast waves, the linear operator
is approximated in time in the implicit way, while the nonlinear one is approximated in an explicit way. This
yields a desired CFL stability condition depending just on the slow waves. Since most geophysical phenomena
show a very localized behaviour, i.e. we have small regions with strong interactions in a larger surrounding area
with almost steady solutions, grid adaptation is an inevitable tool. In [1] Bollermann, Lukáčová-Medvid’ová and
Noelle extended the multidimensional FVEG scheme to non-uniform, adaptive grids, allowing fine resolutions
in the area of interest and a minimal cell number in steady regions. The adaptive grid techniques are used in
new semi-implicit DGEG methods as well.

The results that will be presented are based on the collaboration with S. Noelle, K.R. Arun (Aachen) and
A. Hundertmark, L. Yelash, A. Müller (Mainz). This research has been supported by the German Research
Foundation DFG under the grant LU 1470/2-2.
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A WENO-TVD finite volume scheme for the numerical approximation of
atmospheric phenomena

Dante Kalise
Dipartimento di Matematica, Sapienza Università di Roma

kalise@mat.uniroma1.it

We present a 2D WENO-TVD scheme for the approximation of atmospheric phenomena; our work aims to
extend the ideas originally introduced in [1], where a 1D version was developed. The scheme considers a spatial
discretization via a second-order TVD flux based upon a flux-centered limiter approach, which makes use of
high-order accurate extrapolated values arising from a WENO reconstruction procedure [2]. Time discretization
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is performed with a third order RK-TVD scheme, and splitting is used for the inclusion of source terms. We
present a comprehensive study of the method in atmospheric applications involving advective and convective
motion. We develop a set of tests for space-dependent linear advection, where we assess convergence and
robustness with respect to the parameters of the scheme. We apply the method to approximate the 2D Euler
equations in a series of tests for atmospheric convection; finally, we analyze the performance of the scheme in a
layered formulation of the primitive equations [3].
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Can one obtain numerically a non-existent solution
for a viscous system of conservation laws?

Dan Marchesin
IMPA, Rio de Janeiro, Brazil

marchesi@impa.br

We study the Riemann problem for a mixed elliptic-hyperbolic system of two conservation laws, with quadratic
polynomial flux functions. This system is viscous, i.e., it contains small non degenerate spatial second derivative
terms.

Numerical simulations using the non-linear Crank-Nicolson scheme with ultra-fine resolution (105 grid points)
find a stable and persistent solution for the PDEs that involves a transitional (or undercompressive) shock
[1]. The traveling wave profile of the transitional shock is a saddle-node saddle connection. However, an
analysis based on Bogdanov-Takens bifurcation in the plane proves that the above mentioned viscous system of
conservation laws does not have a traveling wave profile between these two states. How do we get out of this
conundrum? Increasing resolution does not help.

We believe the numerical solution approximates an orbit for a system of 4 ordinary differential equations.
These are the traveling wave equations for a system of two viscous conservation laws containing small third
order derivative terms. Such a dispersive system approximates well the finite difference Crank-Nicolson scheme
employed in the simulation. Analogous misleading numerical phenomena have already been reported elsewhere;
for relevant theory see e.g. P. LeFloch [2].
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[2] P. G. LeFloch, Hyperbolic Systems of Conservation Laws. The theory of classical and nonclassical shock
waves, ETH Zürich, Birkhäuser, (2002)

Joint work with: Vı́tor Matos (Faculdade de Economia, Centro de Matemática, Universidade do Porto, Portugal), Julio

Daniel Machado Silva (IMPA, Rio de Janeiro, Brazil) .
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Riemann solutions without intermediate constant states for a system in thermal
multiphase flow in porous media

Julio Daniel Silva
Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil

jd@impa.br

We consider a nonlinear system of conservation laws arising in petroleum engineering that models the injection
of a mixture of gas and oil, in any proportion, into a porous medium filled with a similar mixture. The two
mixtures may have different temperatures. An example of such class can be found in [1].

We will focus on a particularly unusual feature found in this model: the Riemann solution for the system
is given by a single wave group for a full open set of Riemann data, i.e., there is no constant intermediate
state. The key aspect supporting the construction of these Riemann solutions is the existence of structurally
stable doubly sonic shock waves, which robustly connect slow rarefaction waves to fast rarefaction waves. Albeit
superficially similar to the doubly sonic transitional shock waves predicted in [2], in our case, the doubly sonic
shock waves vary when we allow the Riemann data to change.

The solutions are constructed around a coincidence curve, intrinsically associated to most bifurcations in
the Riemann solutions for this class of models.
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Classification of the umbilic point for general
immiscible three-phase flow in porous media

Vı́tor Matos
Faculdade de Economia, Centro de Matemática, Universidade do Porto, Portugal

vmatos@fep.up.pt

We consider the flow in a porous medium of three fluids that do not mix nor interchange mass. Under simplifying
assumptions this is the case for oil, water and gas in a petroleum reservoir. For simple geometry, the horizontal
displacement of a pre-existent uniform mixture by another injected mixture gives rise to a Riemann problem
for a system of two conservation laws. Such a system depends on laboratory-measured relative permeability
functions for each of the three fluids. For Corey models each permeability depends solely on the saturation of
the respective fluid [1], giving rise to systems containing an umbilic point in the interior of the physical domain,
i.e., the saturation triangle. It has been conjectured that the structure of the Riemann solution in the triangle
is strongly influenced by the nature of the umbilic point, which is determined by the quadratic expansion of
the flux function nearby. In [2] Schaeffer, Shearer, Marchesin and Paes-Leme proved, for very general Corey
permeabilities, that umbilic points lie in Cases I or II of Schaeffer&Shearer’s classification.

In the current work we find precisely the boundaries where the transition occurs in permeability parameter
space, which was not done in [2]. The novel tool is a constructive method for determining the boundary between
Case I and Case II for systems of two conservation laws. In the talk, we present this novel method and we apply
it to a family of Corey models.
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Dan Marchesin (IMPA - Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil).
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A Discontinuous Galerkin Scheme for compressible phase field models

Mirko Kränkel
Department of Applied Mathematics,University of Freiburg

kraenkel@mathematik.uni-freiburg.de

The Talk will present a numerical scheme for compressible Navier-Stokes equations coupled with an Allen-Cahn
Type equation. These equations are obtained from a thermodynamic consistent phase field model for two-phase
flow given by a work of Gabriele Witterstein [1]. The model allows for the combination of physically different
phases and control over the width of the transition layer between the faces. One application for this model
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is the simulation of liquid-vapor flow, which is the main goal of our research. The governing equations are
solved by a Local Discontinuous Galerkin scheme in combination with implicit and explicit Runge Kutta time
stepping schemes of higher order. We will discuss in particular the treatment of the additional second order
term modeling the surface tension in the momentum balance equation. Mesh adaptation and the choice of the
physical parameters are addressed as well and numerical examples are presented.
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Joint work with: Dietmar, Kröner (Department of Applied Mathematics,University of Freiburg)
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Capillarity approximation
of conservation laws with discontinuous fluxes

Lorenzo di Ruvo
Department of Mathematics University of Bari via E. Orabona 4, 70125 Bari, Italy

diruvo@dm.uniba.it

We have studied the dynamics of flows in porous media. It is well known that small scale effects are neglected
in modeling two phase flow in a porous medium. Such models including (static) capillary pressure have been
studied in the context of flows in homogeneous medium. However, in reality, the porous medium is heterogeneous
with possible discontinuities in the rock type. We have considered the dynamic capillary pressure. The addition
of this effects results in a mixed hyberbolic-parabolic equation with a possibly discontinous dispersion term. In
the other words, let ν > 0. The dynanics is described by the equation






∂tunu+ ∂xf(kν , uν) = ν∂x(g(lν , uν)∂xuν) + ν2∂x(h(mν , uν)∂txuν), t > 0, x ∈ R,
∂tkν = ν∂xxkν , t > 0, x ∈ R,
∂tlν = ν∂xxlν , t > 0, x ∈ R,
∂tmν = ν∂xxmν , t > 0, x ∈ R,
uν(0, x) = u0,ν(x), x ∈ R,
kν(0, x) = k0,ν(x), x ∈ R, ,
lν(0, x) = l0,ν(x), x ∈ R,
mν(0, x) = m0,ν(x), x ∈ R,

where we assume f, g, h : R2 → R are smooth functions such that g(·, ·), h(·, ·) ≥ α, for some constant α > 0.
In addition, f(k, ·) is assumed to be genuinely nonlinear for every k ∈ R, namely the map u ∈ [0, 1] /→ f(k, u)
is not affine on any nontrivial interval for every k ∈ R. On the functions kν , l, m, u0,ν : R → R we assume that

k0,ν , l0,ν , m0,ν ∈ C∞(R) ∩W 1,1(R), u0,ν ∈ C∞(R) ∩ L1(R) ∩ L∞(R), 0 ≤ u0,ν ≤ 1.

We have that there exist u0, k, l,m such that

uν,0 → u0, kν → k, lν → l, mν → m ν → 0.
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Using the compansated compactness, we prove that there exist uνn , subsequence of uν , such that uνn → u,
where u is a distributional solution of

{
∂tu+ ∂xf(k(x), u) = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

Joint work with: G. M. Coclite ( Department of Mathematics University of Bari via E. Orabona 4, 70125 Bari, Italy),

S. Mishra (Seminar for Applied Mathematics (SAM) ETH Zürich, HG G 57.2, Rämistrasse 101, 8092 Zürich, Switzer-

land.).
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Conservation laws with filtered variables

Franziska Weber
ETH Zürich

frweber@student.ethz.ch

The properties of the solution to the convectively filtered Burgers’ equation, a regularization of Burgers’ equation
with the convective velocity replaced by a nonlocal averaged velocity, are examined. It is found that the limit
of solutions, as the regularizing parameter α goes to zero, does not satisfy an entropy inequality owing to the
reversibility of the equation and the absence of an L1-contraction estimate for the limit of solutions.

In an attempt to overcome the reversibility of the equation, a model with a filter depending on time is
considered. The limit of solutions turns out to be a weak solution of Burgers’ equation but not the entropy
solution either.

Then, two possible modifications of a general scalar conservation law using filtered quantities are considered
and found to be usuitable as regularizations of the conservation law since the limit function, obtained when
letting the averaging parameter α go to zero, is not necessarily a weak solution of the conservation law.
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On the decay property for periodic entropy solutions to scalar conservation laws

Evgeniy Yu. Panov
Novgorod State University
Eugeny.Panov@novsu.ru

In the half-space Π = R+ × Rn, we consider a first order multidimensional conservation law

ut + divxϕ(u) = 0, (1)

where ϕ(u) = (ϕ1(u), . . . ,ϕn(u)) ∈ C(R,Rn). Recall that a function u = u(t, x) ∈ L∞(Π) is called an entropy
solution (e.s. for short) of (1) in the sense of S.N. Kruzhkov [2] if for all k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))] ≤ 0 in D′(Π).

We assume that the requirement of space-periodicity holds: u(t, x + ei) = u(t, x) for almost all (t, x) ∈ Π and
all i = 1, . . . , n, where {ei}ni=1 is a fixed basis of periods in Rn. Without loss of generality, we may suppose that
{ei}ni=1 is the canonical basis. We denote by P = [0, 1)n the corresponding fundamental parallelepiped (cube).

We will say that equation (1) satisfies the decay property if for every periodic e.s. u(t, x)

ess lim
t→∞

u(t, ·) = const =

∫

P
u(0, x)dx in L1(P ),

where u(0, x) is the trace of u(t, x) on the initial hyperspace t = 0. In the present talk we extend the known
result by G.-Q. Chen and H. Frid [1]. Namely, we establish that the condition

∀ξ ∈ Zn, ξ 3= 0, the function ϕ(u) · ξ is not affine on non-empty intervals

is necessary and sufficient for the decay property. The proof of this result is based on localization principles for
the H-measure corresponding to the sequence u(kt, kx), k ∈ N, and contained in preprint [3].

This research was carried out with the financial support of the Russian Foundation for Basic Research (grant
no. 09-01-00490-a).
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Singular solutions of a fully nonlinear 2x2 system of conservation laws

Darko Mitrovic
University of Montenegro
matematika@t-com.me

Existence and admissibility of δ-shock solutions is discussed for the non-convex strictly hyperbolic system of
equations

∂tu+ ∂x
(u2 + v2

2

)
= 0

∂tv + ∂x(v(u− 1)) = 0.

This fully nonlinear system (i.e. nonlinear with respect to both unknowns) is considered in [1] where it is noticed
that it does not admit the classical Lax-admissible solution for certain Riemann problems. By introducing
complex-valued corrections in the framework of the weak asymptotic method, we show that a compressive
δ-shock solution resolves such Riemann problems. By letting the approximation parameter tend to zero, the
corrections become real-valued and the solutions can be seen to fit into the framework of weak singular solutions
defined in [2]. Moreover, in this context, we can show that every 2×2 system of conservation laws admits δ-shock
solutions.
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High Order Methods with Adaptive Mesh Refinement for the Solution of the
Relativistic MHD Equations

Olindo Zanotti
University of Trento

olindo.zanotti@ing.unitn.it

We present a high order scheme with adaptive mesh refinement for the numerical solution of the relativistic
magnetohydrodynamics equations in multiple space dimensions. The nonlinear system under consideration is
purely hyperbolic and contains a source term, that for the evolution of the electric field, that can become stiff for
low values of the resistivity. For the spatial discretization a high order PNPM scheme is used [1], which combines
in a single framework both finite volume methods and Galerkin methods. In addition, a high order accurate
unsplit time discretization is achieved using an element-local space-time discontinuous Galerkin approach [2].
The divergence free character of the magnetic field is accounted for through the divergence cleaning procedure.
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The proposed method can handle equally well the resistive regime and the stiff limit of ideal relativistic MHD [3].
For these reasons it provides a powerful tool for relativistic plasma physics simulations involving the appearance
of magnetic reconnection [4]. Several tests and physical applications are discussed and presented.
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A front tracking analysis for the ultra relativistic Euler equations

Mahmoud Abdelrahman
Otto-von-Guericke-university-Magdeburg-Germany

mahmoud.abdelrahman@st.ovgu.de

In this paper we study the relativistic Euler equations in isentropic fluids with the equation of state p = ρ
3 ,

which is the ultra-relativistic limit. We first analyze the single shocks and rarefaction curves. Then the Riemann
problem is solved constructively. We derive sharp estimates for the strength of the waves in the Riemann solution
and prove uniqueness for the Riemann problem. We study explicit examples for the non-backward uniqueness
for the ultra relativistic Euler equations. We also present a new Riemann solution and a wave tracking algorithm
for the relativistic Euler equations.
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Joint work with: Matthias Kunik (Otto-von-Guericke-university-Magdeburg-Germany), Gerald Warnecke (Otto-von-

Guericke-university-Magdeburg-Germany).
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Existence and stability of relativistic plasma-vacuum interfaces

Yuri Trakhinin
Sobolev Institute of Mathematics, Novosibirsk, Russia

trakhinin@mail.ru

The equations of relativistic magnetohydrodynamics in the Minkowski spacetime (t, x) are written as a system
of conservation laws and then as the symmetric hyperbolic system

A0(U)∂tU +A1(U)∂1U +A2(U)∂2U +A3(U)∂3U = 0 (1)

for the vector U = (p, u,H, S) of “primitive” variables, where p is the pressure, u = vΓ, Γ = (1− |v|2)−1/2, v is
the 3-velocity, H is the magnetic field 3-vector, and S is the entropy. A concrete form of symmetric matrices
Aα was recently found in [1]. The vacuum Maxwell equations ∂tH + ∇ × E = 0, ∂tE − ∇ × H = 0 for the
electromagnetic field V = (E,H) also form a symmetric system in the form of (1) with A0 = I and constant
matrices Aj . Moreover, we have the divergence constraints divH = 0, divE = 0 and divH = 0 on the initial
data (U, V )|t=0 = (U0, V0).

Let Ω±(t) =
{
x1 ≷ ϕ(t, x2, x3)

}
be the domains occupied by the plasma and the vacuum respectively. Then,

on the interface Σ(t) = {x1 = ϕ(t, x2, x3)} we have the conditions

∂tϕ = vN , q = (|H|2 − |E|2)/2,
E2 = H3∂tϕ− E1∂2ϕ, E3 = −H2∂tϕ− E1∂3ϕ,

(2)

where q = p + |H|2/(2Γ2) + (v,H)2 is the total pressure and vN is the normal component of the velocity.
Moreover, the conditions HN |Σ = 0 and HN |Σ = 0 are restrictions on the initial data, and we assume that the
plasma density ρ|Σ > 0.

Our final goal is to find conditions on the initial data (U0, V0,ϕ0) providing the local-in-time existence and
uniqueness of a smooth solution (U, V,ϕ) of the free boundary problem for system (1) in Ω+(t) and the Maxwell
equations in Ω−(t) with the boundary conditions (2) on Σ(t). Following [3, 4], we use the reduction to a fixed
domain, the passage to Alinhac’s “good unknown” (see [3]), and a suitable Nash-Moser-type iteration scheme.
Since the interface is a characteristic surface, as in [3], the functional setting is provided by the anisotropic
weighted Sobolev spaces Hm

∗ . The crucial point is finding a sufficient stability condition for a planar plasma-
vacuum interface. This condition was found in [6] by a so-called secondary symmetrization of the vacuum
Maxwell equations.

Note that the secondary symmetrization of the vacuum Maxwell equations was recently used in [2] to prove
the existence of solutions for the nonrelativistic version of the linearized plasma-vacuum interface problem [5]
by a hyperbolic regularization of the elliptic div-curl system for the vacuum magnetic field.

This work was supported by RFBR (Russian Foundation for Basic Research) grant No. 10-01-00320-a.
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Relativistic Burgers equations on a curved spacetime

Baver Okutmustur
Middle East Technical University (METU)

baver@metu.edu.tr

Within the class of nonlinear hyperbolic balance laws posed on a curved spacetime (endowed with a volume
form), we identify a hyperbolic balance law that enjoys the same Lorentz invariance property as the one satisfied
by the Euler equations of relativistic compressible fluids. This model is unique up to normalization and converges
to the standard inviscid Burgers equation in the limit of infinite light speed. Furthermore, from the Euler system
of relativistic compressible flows on a curved background, we derive, both, the standard inviscid Burgers equation
and our relativistic generalizations. The proposed models are referred to as relativistic Burgers equations on
curved spacetimes and provide us with simple models on which numerical methods can be developed and
analyzed. Next, we introduce a finite volume scheme for the approximation of discontinuous solutions to
these relativistic Burgers equations. Our scheme is formulated geometrically and is consistent with the natural
divergence form of the balance laws under consideration. It applies to weak solutions containing shock waves
and, most importantly, is well–balanced in the sense that it preserves static equilibrium solutions. Numerical
experiments are presented which demonstrate the convergence of the proposed finite volume scheme and its
relevance for computing entropy solutions on a curved background.

This presentation is based on the joint paper [2].
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6.9 Session 18 — Room C — Control Problems for Hyperbolic Equations II

S18 – Control Problems for Hyperbolic Equations II – Room C, 17.20–17.50

Optimal control of cell mass and maturity in a model of follicular ovulation

Peipei Shang
Inria Paris-Rocquencourt

Laboratoire Jacques-Louis Lions
peipeishang@hotmail.com

In this work, we study optimal control problems associated with a scalar hyperbolic conservation law modeling
the development of ovarian follicles. Changes in the age and maturity of follicular cells are described by a 2D
conservation law, where the control terms act on the velocities. The control problem consists in optimizing
the follicular cell resources so that the follicular maturity reaches a maximal value in fixed time. Using an
approximation method, we prove necessary optimality conditions in the form of Pontryagin Maximum Principle.
Then we derive the optimal strategy and show that there exists at least one optimal bang-bang control with
one single switching time.
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S18 – Control Problems for Hyperbolic Equations II – Room C, 17.50–18.20

Optimal Boundary Control for Nonlinear Hyperbolic Balance Laws

Sebastian Pfaff
TU Darmstadt

pfaff@mathematik.tu-darmstadt.de

Consider the optimal control problem

min J(y, u)

subject to u ∈ Uad, y = y(u)

where the control u consists of an intial datum u0, a boundary datum uB and an additional control u1 of the
source term. The state y is the unique entropy solution of a nonlinear balance law on [0,∞):

yt + f(y)x = g(t, x, y(t, x), u1(t, x)) (1)

y(0, ·) = u0 (2)

y(·, 0) = uB . (3)

The boundary condition (3) is understood in the sense of Bardos, LeRoux and Nédélec.
In order to apply fast optimization methods we need the differentiabilty of the reduced objective functional

u /→ Ĵ(u) := J(u, y(u)). As it is well known the mapping u /→ y(u) is not differentiable in the usual sense.
We show that the state depends shift-differentiable on the control by extending previous results of [1] for the
control of Cauchy problems which in turn implies the Fréchet-differentiabilty for tracking-type functionals Ĵ .
Furthermore we present an adjoint-based gradient representation for this class of cost functionals. The adjoint
equation is a linear transport equation with discontinuous coefficients on a bounded domain which requires a
proper extension of the notion of a reversible solution.
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On the attainable set for Temple class systems with characteristic boundary

Fabio S. Priuli
University of Padua, Italy
priuli@math.unipd.it
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We study the exact controllability problem for entropy weak solutions to strictly hyperbolic, genuinely nonlinear,
Temple class systems of balance laws

ut + f(u)x = g(t) 0 ≤ x ≤ 1 , u ∈ RN , (1)

on a bounded interval [0, 1], with possibly characteristic boundaries. Namely, in the same spirit of [3], we
consider the mixed initial–boundary value problem for (1), where the initial data u(0, x) = u(x) is fixed, and
we regard both the source term g and the boundary data α0(t),α1(t) at x = 0, x = 1, as control functions. We
show that, for every given profile Φ ∈ BV(0, 1), whose components Φi in Riemann coordinates satisfy DΦi ≤ C
(in the sense of measures) for some C > 0, one can choose a source term g and boundary controls α0,α1, so
that the corresponding solution to (1) attains the value Φ, at a sufficiently large time time T > 0. This result in
particular extends exact boundary controllability properties previously obtained (with no source term acting as
a control) in [1] for Temple class systems with non characteristic boundary, and in [2] for quasilinear hyperbolic
systems with characteristic boundary when the initial and terminal data u,Φ are smooth and sufficiently close
in C1-norm to an equilibrium state.
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Global Small Solutions of the 3D Kerr-Debye Model

Mohamed Kanso
Univ. Bordeaux, IMB

Mohamed.Kanso@math.u-bordeaux1.fr

In this talk, we deal with the following Kerr-Debye system modelling the electromagnetic wave propagation in
a nonlinear medium exhibiting a finite response time (see [6] for details):






∂tD − curl H = 0,

∂tH + curl E = 0,

∂tχ+ 1
τ χ = 1

τ |E|2,
(1)

with the constitutive relation
D = (1 + χ)E.

This system is quasilinear hyperbolic, so it may develop singularities in finite time. Nevertheless the global
existence results for a one dimensional analogous model (see [1]) and the numerical simulations let us think that
the smooth solutions of (1) are global in time. In addition, this system is partially dissipative but the results in
[2] and [5] cannot be applied here because the crucial Shizuta-Kawashima stability condition is not true in our
case. By combining dispersive properties of Maxwell equations (see [4]) and the partial dissipative character of
(1), we establish the global existence with small data of smooth solutions for the Kerr-Debye system.
References
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7 Abstracts of contributed lectures — Tuesday 15.15–16.15

7.1 Session 19 — Room E — Numerical Methods VII

S19 – Numerical Methods VII – Room E, 15.15–15.45

Amelioration of Shock-capturing Anomalies

Philip Lawrence Roe
Department of Aerospace Engineering

University of Michigan, Ann Arbor, USA
philroe@umich.edu

When a capturing strategy is applied to the computational treatment of shockwaves, it is well-known that a
variety of anomalies result. These include the shedding of spurious waves from slowly-moving shocks, instability
of certain stationary solutions, the ”wall-heating” and ”carbuncle” phenomena. We contend that all of these
stem, at least in part, from an ambiguity in position.

Consider a stationary shock captured by the Godunov scheme. It should be possible to deduce the location
of it from the integrals of the conserved variables, but it can be shown that these will conflict because the
intermediate state lies on the Hugoniot locus. There is ambiguity unless this locus lies along a straight line in
state space, and most systems of practical interest do not have this property. This ambiguity can be used to
explain the anomalies.

However, we have devised a shock-capturing strategy that forces the shock profile, in the limiting case of
a stationary shock, to follow a straight path. It involves smoothing the values of the fluxes within the cells
according to a procedure havng the following properties.

1. The procedure has no effect if the system being solved is linear, that is, if the flux Jacobian is constant.

2. For nonlinear systems, the effect is O(h2) in smooth regions.

3. For nonlinear sytems, the effect is O(1) at shocks.

4. For isolated stationary shocks, the flux becomes constant in all cells

The procedure has two consequences that make physical sense. In the exact solution the flux varies only
slightly across a slowly-moving shock, but by contrast varies strongly across a slowly-moving captured shock;
the variation is now slight in both cases. Intermediate states are no longer in local thermodynamic equilibrium;
that is true also of shocks in the physical world.

By construction this procedure eliminates any ambiguity in position for stationary shocks, and leads to a
complete family of stable shock equilibria. It almost completely cures the problems with slowly-moving shocks,
and reduces the wall-heating problem by at least 70%. There is virtually no loss in shock resolution.

Joint work with: Daniel Wei-Ming Zaide (University of Michigan)
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S19 – Numerical Methods VII – Room E, 15.45–16.15

Asymptotic-preserving schemes for unusual long-time asymptotics

Rodolphe Turpault
Université de Nantes, Laboratoire de Mathématiques Jean Leray,

2, rue de la Houssinière, 44322 Nantes (France)
rodolphe.turpault@univ-nantes.fr

We consider the long-time behaviour of the following hyperbolic systems supplemented by stiff source terms:

∂tU + ∂xF (U) = −σ(U)R(U),

where U ∈ RN and F, σ > 0 and R are supposed to satisfy the asumptions stated in [1]. In particular, we
assume the existence of a constant matrix Q such that QR(U) = 0 in order to ensure the existence of a limit
regime for u = QU ∈ Rn of the form (see for instance [2,1]):

∂tu− ∂x
(
G(u, ∂xu)

)
= 0. (1)

Here, G is a nonlinear function.

In many regimes of physical interest, the equation (1) ends up to be an eventually nonlinear scalar diffusion
equation i.e. G(u, ∂xu) = h(u)∂xu for some suitable function h. In this talk however, we will focus on more
challenging asymptotic regimes:

• either n > 1 and (1) cannot be written into a system of decoupled equations.

• or ∂xG is a p-Laplace-type operator.

We will give examples issuing from applications of models involving such limits, for instance the coupling be-
tween the M1-model for radiative transfer and Euler equations on the one hand and shallow-water equations
with friction on the other hand.

The main purpose of this work concerns the numerical approximation of such systems through long-time
asymptotic preserving schemes. During the last decade, several schemes which can deal with scalar diffusive
limits were proposed. However, none of these methods can be extended to the difficult situations pointed out
above. On the contrary, we will show that a suitable extension of the scheme proposed in [1] allows to tackle
with these situations.
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Joint work with: Christophe Berthon (Université de Nantes, LMJL), Philippe LeFloch (CNRS, LJLL) and Fabien
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7.2 Session 20 — Room C — Navier-Stokes and Euler Equations III

S20 – Navier-Stokes and Euler Equations III – Room C, 15.15–15.45

Global well-posedness of 2D compressible Navier-Stokes equations with large
data and vacuum

Quansen Jiu
School of Mathematical Sciences, Capital Normal University, Beijing 100048,PRC

jiuqs@mail.cnu.edu.cn

In this talk, we will present some recent results on the global well-posedness of the 2D compressible Navier-
Stokes equations with large initial data and vacuum. It is proved that if the shear viscosity µ is a positive
constant and the bulk viscosity λ is the power function of the density, that is, λ(ρ) = ρβ with β > 3, then the
2D compressible Navier-Stokes equations with the periodic boundary conditions on the torus T 2 admit a unique
global classical solution (ρ, u) which may contain vacuums in an open set of T 2. Note that the initial data can
be arbitrarily large to contain vacuum states. The Cauchy problem will also be discussed. This is joint with Yi
Wang and Zhouping Xin.

Joint work with: Yi Wang(Institute of Applied Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics,

CAS, Beijing 100190, P. R. China), Zhouping Xin (The Institute of Mathematical Sciences, Chinese University of

HongKong, HongKong)
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S20 – Navier-Stokes and Euler Equations III – Room C, 15.45–16.15

Well-posedness of the linearized plasma-vacuum interface problem in ideal
incompressible MHD

Paola Trebeschi
Department of Mathematics, University of Brescia

paola.trebeschi@ing.unibs.it

We consider the free boundary problem for the plasma vacuum interface model in ideal incompressible magneto-
hydrodynamics. Under a suitable stability condition on the initial discontinuity, the well-posedness of the
linearized problem, around a non constant basic state sufficiently smooth, is investigated. Since the latter
amounts to be a non standard initial-boundary value problem of mixed hyperbolic-elliptic type, for its resolution
we introduce a fully ”hyperbolic” regularized problem. For the regularized problem, a suitable a priori estimate,
uniform with respect to the small parameter of the regularization, is derived in the anisotropic Sobolev space
H1

∗ .
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Entropy dissipation property of adaptive mesh reconstruction techniques

Nikolaos Sfakianakis
Johannes Gutenberg University, Mainz

sfakiana@uni-mainz.de

Introduction. In this work we analyze the entropy dissipation property of the mesh adaptation procedures
when resolving hyperbolic conservation laws. Numerical evidence in [1, 3, 4, 6] have exhibited that mesh
adaptation can improve the stability properties of the numerical schemes been used and more specifically it can
provide with enough entropy dissipation to stabilize entropy unstable schemes [2].

In this work we provide analytical justification of this phenomenon, and postulate conditions on the mesh
adaptation and prove their sufficiency to enforce entropy stability.

Background material. We resolve the scalar CL

ut + f(u)x = 0,

using finite difference and finite volume schemes. The spatial disretization takes place over non-uniform adap-
tively redefined meshes of constant cardinality. The time steps are also adaptively redefined after the CFL
condition.

To exhibit the entropy dissipation of the mesh adaptation techniques, we consider the FTCS (Forward in

Time Centered in Space) scheme, with flux function that reads Fn
i+1/2 =

f(un
i+1)−f(un

i−1)

2 , where un
i are the

numerical approximation of the solution of the CL.
We study the FTCS, using its Q-form:

un+1
i = un

i − ∆t

2hn
i

(
fn
i+1 − fn

i−1

)
+

∆t

2hn
i

(
Qn

i+1/2(ui+1 − ui)−Qn
i−1/2(u

n
i − un

i−1)
)

where hn
i is the cell size, and with the viscosity coefficient being QFTCS

i+1/2 = Qn
i+1/2 =

fn
i +fn

i+1−2Fn
i+1/2

un
i+1−un

i
= 0.

Following [8] and [7], we deduce by means of comparison that the FTCS is entropy stable as long as

QFTCS
i+1/2 > Q∗

i+1/2

where Q∗
i+1/2 is the viscosity coefficient of an entropy stable scheme as defined in [7, 8]. More specifically,

using the entropy function U(u) = 1
2u

2 and the respective entropy variables as they were introduced in [5]
we prove the following proposition: Proposition. The viscosity coefficient of the FTCS scheme satisfies
Q∗

ν+1/2 < 0 = QFTCS
ν+1/2 along shock waves, and QFTCS

ν+1/2 = 0 < Q∗
ν+1/2 along rarefaction waves.
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Remark. This proposition point out that the FTCS is not entropy stable, i.e does not dissipate enough entropy
along rarefactions. At the same time, numerical tests exhibit that FTCS dissipates enough entropy when when
used on non-uniform adaptively redefined meshes (under conditions on the mesh adaptation).

So, the following question are posed:
Question. What are the mechanisms that dissipate entropy when FTCS is used over adaptively redefined
meshes?
Question. Can the mesh be adapted in a way that guarantees entropy dissipation?

In this work. To answer the previous questions we focus on the case of rarefaction waves and consider a
uniform mesh of the same cardinality as the non-uniform one. We define a discrete function over the uniform
mesh via a per cell mass conservation between the uniform and the non-uniform mesh; justifiable by a suitable
geometric conservation law. These relation are exhibited, with respect to the main steps of a mesh adaptation
procedure, in the following schemes:

Non-uniform :: {hn
i , u

n
i }

mesh adapt.−−−−−−−−→
{
hn+1
i , ûn

i

} num. scheme−−−−−−−−→
{
hn+1
i , un+1

i

}
(1)

Uniform :: {∆x, vni }
mesh adapt.−−−−−−−−→ {∆x, v̂ni }

num. scheme−−−−−−−−→
{
∆x, vn+1

i

}
(2)

and the per cell mass conservation means that:

hn
i u

n
i = ∆x vni

mesh adapt.−−−−−−−−→hn+1
i ûn

i = ∆x v̂ni
num. scheme−−−−−−−−→ hn+1

i un+1
i = ∆x vn+1

i . (3)

Effectively, the numerical scheme can be written over the uniform mesh as follows

vn+1
i = v̂ni − ∆t

∆x

(
F̂n
i+1/2 − F̂n

i−1/2

)
,

or in viscosity form,

vn+1
i − vni =v̂ni − vni

+
∆t

2∆x

((
Bn

i+1/2 +Qn
i+1/2

)
∆vni+1/2 −

(
Bn

i−1/2 +Qn
i−1/2

)
∆vni−1/2

)
(4)

where Bν+1/2 =
g(vn

ν+1)−g(vn
ν )

∆vn
ν+1/2

, ∆vni−1/2 = vni − vni−1, and where v̂ni − vni accounts for the change of the mesh

change.
We follow now the works of [5, 8] to write the scheme in the corresponding entropy variables

U(vn+1
i )− U(vni ) +

∆t

∆x

(
Gn

i+1/2 −Gn
i−1/2

)
= Mn

i − ∆t

∆x
E(x)
i + E(FE)

i (∆vn+1/2) (5)

where E(x)
i , E(FE)

i account for the entropy dissipation/production due to the spatial and temporal discretiza-
tion, and the new term Mn

i stems from the term v̂ni − vni that appears in (4) and accounts for the entropy
dissipation/production due to the mesh adaptation.

We estimate the terms E(x)
i , E(FE)

i following [8] and close by deducing that the following condition as being
a sufficient one for the entropy dissipation of the mesh adaptation technique:

Mn
i ≤ ∆t

∆x

{(
Dn

i−1/2 −
K3

2

∆t

∆x
(B̃i−1/2 +Dn

i−1/2)
2

)
(∆vni−1/2)

2

+

(
Dn

i+1/2 −
K3

2

∆t

∆x
(B̃i+1/2 +Dn

i+1/2)
2

)
(∆vni+1/2)

2

}
(6)

where B̃ν+1/2 = Bν+1/2 +Q∗
ν+1/2, Q

∗
ν+1/2 = Qν+1/2 −Dν+1/2.
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Nonlinear fractional equations of mixed hyperbolic parabolic type: Initial theory
and numerics.

Espen Robstad Jakobsen
Department of Mathematical Sciences, NTNU, Norway

erj@math.ntnu.no

In this talk we consider the Cauchy problem for a class of equations with nonlinear convection and fractional
nonlinear diffusion:

∂tu+∇ · f(u) = L[A(u)], (1)

where f,A are locally Lipschitz, A is nondecreasing, and L is a fractional diffusion operator. L can be the
generator of any pure jump Levy process and the typical example is L = −(−5)

α
2 , the fractional Laplacian

of order α ∈ (0, 2). This equation might be strongly degenerate and of mixed type. It can be seen as a
generalization of fractional conservation laws [1] to the nonlinear diffusion setting, or of convection-diffusion
equations to the fractional diffusion setting. Equation (1) include as special cases previous fractional/Levy
conservation laws, radiation hydrodynamic models, recent fractional porous medium equations (see [5] where
A(u) = um,m ≥ 1), and new strongly degenerate equations.

We will introduce Kruzkov type entropy solutions for (1) and present wellposedness, continuous dependence,
and some regularity results when the initial data is at least in L1 ∩ L∞. Then we introduce and analyze a
monotone numerical method. Finally we present a new Kuznetsov type theory giving general and possibly
optimal error estimates for our numerical methods even when the principal derivatives have any fractional
order between 1 and 2!

The results are mainly taken from papers [3,2,4].
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Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction
(DMGR)

Vivien Desveaux
Université de Nantes, Laboratoire de Mathématiques Jean Leray

vivien.desveaux@univ-nantes.fr

We are interested in the approximation of the weak solutions of nonlinear hyperbolic systems of conservation
laws on unstructured meshes. In order to achieve high-order approximation, we discuss extensions of the well-
known MUSCL scheme. This scheme is a finite volume method where the fluxes at the interface are approximated
using a linear reconstruction on each cell. The gradient reconstructions are easily defined for 1D problems and
naturally extend on 2D Cartesian meshes. However it becomes difficult to compute accurately the gradients as
soon as unstructured meshes are considered.

To deal with such an issue, we propose to use a technique originally introduced in the field of elliptic equations
(for instance, see [1]). We combine two distinct MUSCL schemes on two overlapping meshes (primal and dual).
This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients
on diamond cells.

In order to avoid spurious oscillations, we have to complete the linear reconstruction by a limitation pro-
cedure. The limitation is also a key-point to ensure the invariance of the set of physical states. In general,
enforcing the MUSCL scheme to satisfy such a robustness property can be made at the expense of a restrictive
CFL condition, which leads to a larger computational cost.

The second-order CFL number is a fraction of the first-order one. One objective of this work is to optimize
the CFL number associated to the first-order method. In [2], the authors evaluate the first-order CFL as follows:

∆t
P
|K|λ ≤ 1

2
,

where |K| is the area and P the perimeter of the control volume. Here we exhibit an optimal CFL condition
given by

∆t
P
|K|λ ≤ 1.
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Let us emphasize that this condition generalizes the usual one on Cartesian grids with uniform length ∆x given
as follows:

∆t

∆x
λ ≤ 1

4
.

This time increment evaluation is next adopted to propose a relevant second-order CFL condition to ensure the
robustness of MUSCL schemes on 2D unstructured meshes.

Finally, we show numerous numerical experiments approximating the 2D Euler equations. Several simula-
tions involving low density and strong shock waves will illustrate the good behaviour of the method (see Figure
1).

Figure 1: Double Mach reflection problem on a mesh made of 2.106 cells – zoom on the wave interaction – Left:
first-order density approximation – Right: DMGR density approximation
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A mixture-energy-consistent numerical approximation of a single-velocity
compressible two-phase flow model for fluids with interfaces and cavitation

Marica Pelanti
ENSTA ParisTech

marica.pelanti@ensta-paristech.fr
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We are interested in the simulation of cavitating flow processes by means of diffuse interface compressible
multi-phase flow models. This class of models has shown to be very effective in describing complex wave
propagation phenomena and interface dynamics in compressible multi-material fluids.

In the present work we begin by considering the hyperbolic 6-equation single-velocity two-phase model with
instantaneous pressure relaxation of Saurel–Petitpas–Berry [1]. We adopt a variant of this model by using
phasic total energy equations instead of phasic internal energy equations, in contrast with the more classical
approach [1, 2]. We numerically solve the adopted two-phase model by a high-resolution multi-dimensional
wave-propagation scheme based on a HLLC-type Riemann solver. The alternative formulation with phasic total
energies allows us to write discrete non-conservative phasic energy equations whose sum exactly recovers the
conservative discrete form of the total energy equation for the mixture. A first advantage of this method is that
there is no need to augment the 6-equation model with an extra equation for the mixture total energy as done
in [1, 2] to correct the thermodynamic state resulting from the non-conservative energy equations. Moreover,
the consistence of the computed phasic energies with conservation of the mixture total energy enables us to
ensure agreement of the relaxed pressure with the mixture equation of state, in combination with a simple
non-iterative pressure relaxation procedure. Temperature and Gibbs free energy relaxation terms can be also
included (see e.g. [2]) in a way that preserves consistency with the mixture energy at the discrete level.

Several numerical experiments of cavitation appearance and dynamic creation of interfaces are presented to
show the efficiency of the numerical model.
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Hyperbolic Nets: Modeling, Analysis, Numerical Simulation, and Numerics

Sunčica Čanić
University of Houston
canic@math.uh.edu

From local to global, and from simple to complex, hyperbolic nets can be used to capture the structural
properties of various multi-component, net-like objects whose global properties emerge from complex combina-
tions of local components modeled by 1D conservation laws. Examples include emerging new constructs such as
tissue scaffolds, carbon nano-tubes, and endovascular stents, or classical structures such as bridges and buildings
made of metallic frames, which have been modeled using simplified net-based truss theory.

This talk will present our first steps in the development of a general theory, modeling, numerical simulation,
and applications of nonlinear hyperbolic nets. As a prototypical example, we will focus on studying the structural
properties of endovascular stents modeled as hyperbolic nets in 3D. The speaker will talk about a novel mod-
eling approach to studying mechanical properties of these cardiovascular devices, and about the consequences
of the numerical results in cardiovascular applications. The new modeling approach based on dimension reduc-
tion and hyperbolic net ideas, provides substantial computational savings, it provides new information about
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the emergent mechanic behavior of stents, and it provides a novel framework for the development of general
mathematical hyperbolic net theory.

While the classical 1D nonlinear hyperbolic conservation laws theory is well developed, mathematical theory
of 1D nonlinear hyperbolic systems defined on nets and networks is in its infant stages. The main challenges stem
from the complex nonlinear wave interactions that occur at net’s vertices, exhibiting mathematical complexity of
nonlinear moving-boundary problems, and from the fact that local solution depends on the global properties of
the entire hyperbolic net. This talk will address the main difficulties associated with the development of general
hyperbolic net theory, the modeling strategy, and numerical method development for studying multi-component,
net-like structures such as stents as nonlinear hyperbolic nets.

Collaborators include: Prof. J. Tambaca (University of Zagreb), Prof. B. Picoli, (Rutgers, Camden), graduate student

M. Kosor (University of Houston and U of Zagreb), Dr. D. Paniagua (Texas Heart Institute), and Dr. D. Fish (Texas

Heart Institute).
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Conservation Laws in the Modeling of Moving Populations

Rinaldo M. Colombo
Dept. of Mathematics – Brescia University

rinaldo@ing.unibs.it

Conservation laws provide tools to describe the movement of a population, be it a crowd of pedestrians or a
flock of birds, for instance. This presentation overviews analytical results of the resulting models.

First, the case of a single population is recalled, see [1]. Then, we present well posedness theorems for
systems of nonlocal conservation laws in several space dimensions that describe the interactions among different
populations, see [2]. Confinement problems where few agents aim at steering a population within a certain
region are discussed, see [3]. Finally, this latter situation is addressed also with other analytical tools, see [4],
and the different models and results are compared.
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7.6 Session 24 — Room I — Multi Physics Models III
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Harten’s Artificial Compression Method applied to a Multiphase Flow for
Interface Sharpening

Olivier Rouch
Université de Montréal

rouch@dms.umontreal.ca

In 2009 and 2010, Harten’s artificial compression method (ACM - see [1]) was extended to two-dimensional
problems (see [2,3]). One of the main interests of ACM is that it transforms a linearly degenerated contact
discontinuity into a shock, with a constant viscous profile. One can take advantage of this behaviour in the
sharpening of the interface between two immiscible fluids. The performance of Harten’s ACM is dependent
upon the choice of a reliable detector of discontinuities. Fortunately, the mass fraction of one of the two
fluids can be directly used to fulfill this function. In these conditions, the ACM is used as a supplementary
module, independent from the scheme used for solving the main conservation equation, and computationaly
quite inexpensive.

In this talk, we will begin with a quick review of Harten’s ACM and its two-dimensional extensions. Then we
shall see the details of its application to a simple two-phase flow. One- and two-dimensional numerical results
will be presented.
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An entropy-satisfying relaxation approximation for the isentropic Baer &
Nunziato model with vanishing phases

Khaled Saleh
Université Pierre et Marie Curie, LJLL and EDF R&D, FRANCE

saleh@ann.jussieu.fr
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Assuming one-dimensional flow, the governing equations of the isentropic Baer-Nunziato two-phase flow model,
without exchange terms, is given by






∂tα1 + u2∂xα1 = 0,
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,
∂t(α1ρ1u1) + ∂x(α1ρ1u2

1 + α1p1(ρ1))− p1(ρ1)∂xα1 = 0,
∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,
∂t(α2ρ2u2) + ∂x(α2ρ2u2

2 + α2p2(ρ2))− p1(ρ1)∂xα2 = 0.

(1)

Here, α1, ρ1 and u1 denote the volume fraction, density and velocity of phase 1 respectively, while α2 = 1−α1,
ρ2 and u2 are the analogous quantities for phase 2. We assume barotropic pressure laws for each phase
ρi /→ pi(ρi), i ∈ {1, 2}.

In the spirit of [2], we propose a suitable Siliciu-type relaxation approximation for system (1) which re-
lies on a linearization of the pressure laws. In the present work however, a specific emphasis is put on the
satisfaction of an energy inequality and on the stability of the approximation in the regime of a vanishing
phase. As opposed to system (1), the homogeneous part of the relaxation system has only linearly degenerate
characteristic fields, which provides the helpful property that jump relations can be easily derived for each wave.

In many applications, the relevant solutions that must be considered are the solutions with subsonic relative
speeds:

|u1 − u2| < c1, (2)

where c1 is the speed of sound of phase 1. The equality case |u1−u2| = c1 is related to a resonance phenomemon
which corresponds to a loss of hyperbolicity of the system.

The new and remarkable contributions of this work are the following:

1. Considering the Riemann problem for the relaxation system, we prove an existence theorem for solutions
with subsonic relative speeds. In particular, for each subsonic ordering of the characteristic eigenvalues,
we formulate explicit conditions on the left and right initial data of the Riemann problem, that
imply the existence of a solution with such a wave ordering. In addition, the proof is constructive and the
expressions of the intermediate states are known.

2. We prove that, in the neighbourhood of the resonance, |u1 − u2| " c1, the total energy associated with
the relaxation system is dissipated, which is in accordance with the equilibrium system (1) in the context
of resonance.

3. We also derive a relaxation numerical scheme relying on this Riemann solver. The relaxation scheme
appears to compare very favourably with Lax-Friedrichs type solvers. In particular, it handles some
difficult cases as the vanishing phase case (either α1 → 0 or α1 → 1). To that purpose, energy dissipation
is proved to be necessary in some instance.

4. The overall method is shown to be entropy-satisfying under some natural sub-characteristic condition.
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7.7 Session 25 — Room A — Theory of Conservation Laws III

S25 – Theory of Conservation Laws III – Room A, 15.15–15.45

Measure-valued coupling of non-linear hyperbolic PDEs

Florent Renac
ONERA The French Aerospace Lab, 92320 Châtillon Cedex, France

florent.renac@onera.fr

The present work treats the mathematical and numerical coupling of nonlinear hyperbolic PDEs at given fixed
interfaces. The Cauchy problem under consideration typically writes:

{
∂tu+ ∂xf(u, x) = 0, x ∈ R− {0}, t > 0,
u(., 0) = u0,

(1)

for some unknown u = u(x, t) in an open subset Ω ⊂ Rn. Here, the flux function is discontinuous at the
coupling interface {x = 0} and reads:

f(u, x) = f±(u), ±x > 0, (2)

where f± are given smooth maps defined on Ω. Obviously an additional information, the so-called coupling
condition, must be supplemented to model the transient exchange of informations at x = 0. Complementary
frameworks ([1], [2] and the references therein) have been recently proposed to handle this issue. Generically,
the coupling condition expresses a continuity property at x = 0 either for the unknown u or some non-linear
transformation of it. As a consequence of the prescribed continuity property, distinct conservation properties
are inherited and may range from full to partial conservation of the components of the unknown u.

To reflect this very general property, we propose here to model the mathematical coupling thanks to a
bounded vector-valued Borel measure concentrated at x = 0:

{
∂tu+ ∂xf(u, x) = M(u(0+, t),u(0−, t)) δx=0, x ∈ R, t > 0,
u(., 0) = u0,

(3)

where the precise definition of the map M : Ω×Ω → Rn, i.e. the mass of the measure, prescribes the coupling
condition. The proposed framework is proved to be fairly flexible. In particular, it allows to handle coupling
problems constrained by the property that coupled Riemann solutions should keep their values in a given convex
subset of Ω while minimizing some convex non-linear cost function built on the mass M at the interface. This
opens the gates to prediction-correction strategies in the design of coupling procedures. To that purpose, we
will show that existing relaxation frameworks provide convenient numerical tools. Special attention is paid to
Suliciu’s relaxation procedures in the gas dynamics framework.
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S25 – Theory of Conservation Laws III – Room A, 15.45–16.15

Almost global existence of classical discontinuous solutions to general quasilinear
hyperbolic systems of conservation laws with small BV initial data

Zhi-Qiang Shao
Department of Mathematics, Fuzhou University, Fuzhou 350002, China

E-mail:zqshao−fzu@yahoo.com.cn

In the present paper the author investigates the global structure stability of Riemann solutions for general
quasilinear hyperbolic systems of conservation laws under small BV perturbations of the initial data, where the
Riemann solution only contains shocks and contact discontinuities, the perturbations are in BV but they are
assumed to be C1-smooth, with bounded and possibly large C1-norms. The author obtains the almost global
existence and lifespan of classical discontinuous solutions to a class of the generalized Riemann problem, which
can be regarded as a small BV perturbation of the corresponding Riemann problem. Some applications to quasi-
linear hyperbolic systems of conservation laws arising in physics, particularly to one-dimensional compressible
Euler equations in Eulerian coordinates, are also given.
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Sticky particles with interactions
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Department of Mathematics, University of Pavia
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We discuss a simple one-dimensional model for a sticky-particle dynamics in Lagrangian coordinates. Assuming
that the particles self-interact through a force field generated by themselves, we explain how the flow can be
described by a differential inclusion on the space of transport maps. Starting from a discrete particle approx-
imation, we prove global existence and stability results, obtaining a well defined semigroup. In the particular
case of the Euler-Poisson system in the attractive regime this approach yields an explicit representation formula
for the solutions.
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[1] Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,
preprint (2011), Arxiv: 1201.2350, pp. 1-42.
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Consensus and clustering in kinetic and hydrodynamic descriptions of
self-alignment

Eitan Tadmor
University of Maryland
tadmor@cscamm.umd.edu

Self-alignment dynamics is driven by the collective interaction of agents who are influenced by their neighbors.
Examples range from consensus of voters and traffic flows to the formation of flocks of birds, tumor growth etc.
Motivated by particle-based models for self-alignment, we discuss the large time behavior of kinetic and hydro-
dynamic models of self-alignment. We are interested in the emergence of one or more clusters, and in particular,
consensus and unconditional flocking. The dynamics is dictated by a balance between nonlinear convection and
non-symmetric interactions, governed by a convolution-based mid-range alignment. The large time behavior
depends on the keeping the connectivity of non-vacuous clusters.
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7.9 Session 27 — Room B — Control Problems for Hyperbolic Equations III

S27 – Control Problems for Hyperbolic Equations III – Room B, 15.15–15.45

Controllability of a scalar conservation law with nonlocal velocity

Zhiqiang Wang
Fudan University
wzq@fudan.edu.cn

We consider some control problems of a conservation law with nonlocal velocity that models a highly re-
entrant manufacturing system as encountered in semi-conductor production:






ρt(t, x) + (ρ(t, x)λ(W (t)))x = 0, t ∈ (0, T ), x ∈ (0, 1),

ρ(0, x) = ρ0(x), x ∈ (0, 1),

ρ(t, 0)λ(W (t)) = u(t), t ∈ (0, T ),

where λ ∈ C1(R),λ > 0,

W (t) :=

∫ 1

0
ρ(t, x)dx

Here, u is the natural control imposed on the influx. The goal of control is to drive the solution of the above
system either to reach a given final data

ρ(T, x) = ρ1(x), x ∈ (0, 1)

in the case of state controllability or to reach a given outflux condition

ρ(t, 1)λ(W (t)) = yd(t), t ∈ (T1, T )

in the case of nodal profile controllability.
We first prove a local state controllability result, i.e., there exists a control u that drives the solution from

any given initial data ρ0 to any desired final data ρ1 in a certain time period [0, T ], provided that ρ0 and ρ1
are both close to a given equilibrium ρ and T > 1

λ(ρ) . We also obtain a global state controllability result for
the same system with sufficiently large T , where there is no limitation on the distance between the initial data
ρ0 and final data ρ1. Finally, we prove a nodal profile controllability result, i.e., there exists a control u under
which the solution starts from any initial data ρ0 verifies exactly any given outflux yd over a fixed time period
[T1, T ] with T1 suitably large.
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S27 – Control Problems for Hyperbolic Equations III – Room B, 15.45–16.15

Control problems for conservation laws in the context of entropy solutions and
with three controls.

Vincent Perrollaz
Université Paris Dauphine
perrollaz@ann.jussieu.fr

In a first part, we will consider the initial boundary value problem for a scalar conservation law with a C2 flux
f strictly convex: 





ut + (f(u))x = g(t) on R+ × (0, 1),

”u(t, 0) = ul(t)”, ”u(t, 1) = ur(t)” for t ∈ R+,

u(0, .) = u0 on (0, 1),

where the boundary conditions are taken in the sense of Bardos & Leroux & Nedelec. We will show how we can
use ul, ur and g as controls to obtain results on the exact controllability problem and also on the problem of
asymptotic stabilization of constant states, both problems being considered in the context of entropy solutions.
We will also describe how the addition of a third control allowed us to get less restraining conditions for a state
to be reachable than those obtained by Ancona & Marson and Horsin.

In a second part, we will show why the isentropic Euler-Poisson system used in semiconductor physics might
be considered a generalization of the scalar control system above. This system, studied in particular by Degond
& Markowich, Bo Zhang, Poupaud & Rascle & Vila reads:






ρt + jx = 0,

jt +
(

j2

ρ + P (ρ)
)

x
= −σj + q

µφx,

φxx = q
ε (ρ− n).

(1)

Here ρ is the density of electrons, j the density of current, φ the electrostatic potential. We will explain the
additional difficulties encountered in the study of this system and discuss different ways in which the methods
used on the scalar equation might be adapted to this problem.
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8 Abstracts of contributed lectures — Tuesday 17.20–19.20

8.1 Session 28 — Room E — Numerical Methods X

S28 – Numerical Methods X – Room E, 17.20–17.50

Absorbing Boundaries for Free Surface Flow

Smadar Karni
Department of Mathematics, University of Michigan, USA

karni@umich.edu

The evolution of water waves often involves flows in open unbounded domains. Truncating the domain in
numerical simulations raises the need for non-reflecting BCs. We adopt a novel formulation for the water
wave equation [Wu, 1997], in which the problem is reduced to a one dimensional nonlocal PDE for the free
surface, and derive a one-way version of the linearized equation that acts as an absorbing layer near the
artificial computational boundaries. The one way nature of the proposed equation prevents potential errors
at the boundary from propagating back and polluting the solution in the interior of the domain. A version of
the one-way equations that incorporates additional wave damping is also discussed. The equation involves a
fractional derivative operator corresponding to a half-derivative, and can be viewed as a conservation law with
a linear nonlocal flux involving a convolution with a singular integrable kernel. We derive a hierarchy of high
order numerical methods, where the solution is approximated by conservative piecewise polynomials, and the
convolution with the singular kernel is then integrated exactly. Time integration uses Runge-Kutta schemes to
matching order. In this talk, we will discuss the one way water wave equation, the numerical method, and show
numerical results. This is joint work with G.I. Jennings and J.B. Rauch.

∗ ∗ ∗

S28 – Numerical Methods X – Room E, 17.50–18.20

Scalar conservation laws on moving hypersurfaces

Dietmar Kroener
University of Freiburg

dietmar@mathematik.uni-freiburg.de

We consider conservation laws on moving hypersurfaces. In this work the velocity of the surface is prescribed.
But one may think of the velocity to be given by PDEs in the bulk phase. We prove existence and uniqueness
for a scalar conservation law on the moving surface. This is done via a parabolic regularization of the hyperbolic
PDE. We then prove suitable estimates for the solution of the regularized PDE, that are independent of the
regularization parameter. We introduce the concept of an entropy solution for a scalar conservation law on a
moving hypersurface. We also present some numerical experiments. As in the Euclidean case we expect discon-
tinuous solutions, in particular shocks. It turns out that in addition to the ”Euclidean shocks” geometrically
induced shocks may appear. This will be demonstrated in a video.

Joint work with: Gerhard Dziuk (University of Freiburg), Thomas Mueller (University of Freiburg)

∗ ∗ ∗
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S28 – Numerical Methods X – Room E, 18.20–18.50

Explicit Numerical Schemes for the Coupling of Dimensionally Heterogeneous
Free-Surface Flow Models

Christoph Gersbacher
Department of Applied Mathematics, University of Freiburg
christoph.gersbacher@mathematik.uni-freiburg.de

In this talk, we are interested in the numerical simulation of shallow free-surface river flows. In many situa-
tions, the classical two-dimensional Shallow Water Equations (see e.g. [3]) provide a sufficient description of
the physical phenomena. Sometimes, even one-dimensional models may be accurate enough to capture the
hydrodynamics of interest, at much lower computational cost.

In order to reduce overall numerical cost, techniques for coupling one- and two-dimensional Shallow Water
Equations have been proposed in the literature (see e.g. [1,2]). Driven by a-priori considerations, the computa-
tional domain is decomposed into regions where either the coarse, one-dimensional, or the fine, two-dimensional
model will be solved.

Based on a a-priori domain decomposition, we derive an explicit scheme for coupled 1D-2D Shallow Water
systems. The reliability of the scheme and the accuracy of the numerical solutions obtained are illustrated in
suitable test cases.

References

[1] E.D. Fernández-Nieto, J. Marin and J. Monnier, Coupling superposed 1D and 2D shallow-water models:
Source terms in finite volume schemes, Computers & Fluids, 39 (2010), pp. 1070-1082

[2] E. Miglio, S. Perotto, and F. Saleri, Model coupling techniques for free-surface flow problems. I, Nonlinear
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A well-balanced numerical scheme for solutions with vacuum to a 1d quasilinear
hyperbolic model of chemotaxis

Monika Twarogowska
INRIA Sophia Antipolis - OPALE Project-Team

monika.twarogowska@inria.fr

We consider a hyperbolic system of chemotaxis introduced by Gamba et.al. in [2], which models in vitro
experiments of early stages of the vasculogenesis process. It describes the evolution of the density ρ(x, t) of
endothelial cells, their velocity u(x, t) and is coupled with a parabolic equation for the concentration φ(x, t) of
a chemical substance. In one space dimension the system writes as






ρt + (ρu)x = 0,
(ρu)t +

(
ρu2 + P (ρ)

)
x
= −αρu+ χρφx,

φt = Dφxx + aρ− bφ.
(1)
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Chemoattractant φ is released by cells, whereas cells motion is directed by its gradient and is slowed down due
to the adhesion with the substratum. Overcrowding of cells is prevented by the pressure law for isentropic gases
that is P (ρ) = εργ , γ > 1.

This model was developed to describe formation of capillary-like networks from randomly seeded cells.
Emerging of such structured patterns corresponds to non constant stationary solutions composed of regions
where the density ρ is strictly positive and regions where it vanishes. We first provide a detailed description in
the case γ = 2 of the non constant stationary solutions composed of vacuum and only one interval where ρ > 0.

Then we propose a numerical approximation of the chemotaxis system (1) where the hyperbolic part deals
with two problems, namely treating vacuum states and having an accurate approximation of the non constant
stationary states of the system. We use a scheme that couples a well-balanced strategy, in the framework of the
USI method (see [1]), to capture the non constant equilibria for γ > 1 with an adapted flux solver in order to
treat vacuum. Moreover, this scheme preserves the non negativity of the density and shows a small numerical
viscosity.

Using this scheme, we study the dependence of the steady states on the length of the domain, the chemosen-
sitivity constant χ, the adiabatic exponent γ, and the initial mass of cells. In particular, we present some cases
where the asymptotic state is different from the one obtained using the diffusive parabolic Keller-Segel type
model of chemotaxis with a non linear pressure.

References

[1] Bouchut F., Ounaissa H., Perthame B., Upwinding of the source term at interfaces for Euler equations
with high friction, Comput. Math. Appl., 53(3-4) (2007), pp. 361-375

[2] Gamba D., Ambrosi D., Coniglio A., de Candia A., Di Talia S., Giraudo E., Serini G., Preziosi L., Bussolino
F., Percolation, morphogenesis, and burgers dynamics in blood vessels formation, Phys Rev Lett, 90(11)
(2003), pp. 118101

Joint work with: Roberto Natalini (IAC-CNR), Magali Ribot (Université Nice Sophia Antipolis)

8.2 Session 29 — Room C — Navier-Stokes and Euler Equations IV

S29 – Navier-Stokes and Euler Equations IV – Room C, 17.20–17.50

On Whitham’s modulated equations for the Euler–Korteweg system

Sylvie Benzoni-Gavage
Institut Camille Jordan, Université Claude Bernard Lyon 1

benzoni@math.univ-lyon1.fr

The Euler–Korteweg system is a third-order system of conservation laws that takes into account capillary effects.
Written either in Eulerian coordinates (EKE) or in mass Lagrangian coordinates (EKL), its one-dimensional
version takes the form of an abstract Hamiltonian equation

(H) ∂tU = ∂x(JEH[U]) ,

where J is a nonsingular symmetric matrix, and EH denotes the variational derivative of a Hamiltonian func-
tional H = H(U, ∂xU). Some celebrated dispersive equations fall into this framework too, namely the general-
ized Korteweg–de Vries equation (gKdV), and also the non-linear Schrödinger equation (NLS) via the Madelung
transform. Depending on the pressure law involved in the Hamiltonian H, the Euler–Korteweg system admits
more or less rich families of periodic traveling wave solutions. Whitham’s equations for slow modulations of
these waves were first addressed by Gavrilyuk and Serre [1], who derived four first order conservation laws as
modulated equations for (EKL), and pointed out that the hyperbolicity of the resulting system is encoded by
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the convexity of the averaged energy with respect to suitably chosen dependent variables. In the present work
[2], we perform a similar analysis in Eulerian coordinates, and show the connection between the two modulated
systems, which we summarize in the following commutative diagram.

mass Lagrangian
change of coordinates

(EKE) −→ (EKL)
Whitham’s
averaging

↓ ↓
〈EKE〉 −→ 〈EKL〉

In particular, the hyperbolicity of the two modulated systems 〈EKE〉 and 〈EKL〉 occurs simultaneously. In
addition, we extend to the abstract Hamiltonian equation (H) a result that was known for other types of
PDEs (see [3] and references therein) and in the particular case of (gKdV) [4], namely that the hyperbolicity
of the modulated system at some given point, corresponding to a periodic traveling wave, is necessary for the
linearized stability of this wave. Finally, we investigate the hyperbolicity of Whitham’s modulated equations
for the Euler–Korteweg system with van der Waals type pressure laws. We find numerical evidence of unstable
waves, consistently with an unpublished work of Serre reported in [5], and also regions of hyperbolicity of
modulated equations, which allow stable waves as those found analytically by Gallay and Hǎrǎgus for (NLS)
[6].
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Comm. Partial Differential Equations, 30 (2005), pp. 259–282.

[4] M. A. Johnson, K. Zumbrun, and J. C. Bronski, On the modulation equations and stability of periodic
generalized Korteweg-de Vries waves via Bloch decompositions, Phys. D, 239 (2010), pp. 2057–2065.
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Dynam. Differential Equations, 19 (2007), pp. 825–865.

Joint work with: Pascal Noble (Institut Camille Jordan, Université Claude Bernard Lyon 1 ), L. Miguel Rodrigues

(Institut Camille Jordan, Université Claude Bernard Lyon 1 )
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A non-uniqueness result for entropy solutions to the compressible Euler system

Elisabetta Chiodaroli
Institut für Mathematik der Universität Zürich

elisabetta.chiodaroli@math.uzh.ch
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The deceivingly simple-looking compressible Euler equations of gas dynamics have a long history of important
contributions over more than two centuries. If we allow for discontinuous solutions, uniqueness and stability
are lost. In order to restore such properties, further restrictions on weak solutions have been proposed in the
form of entropy inequalities. In this talk we will discuss a counterexample to the well-posedness of entropy
solutions to the multi-dimensional compressible Euler equations (see [1]): we show failure of uniqueness on a
finite time-interval for entropy solutions starting from any continuously differentiable initial density and suitably
constructed bounded initial linear momenta. Our methods are inspired by a new analysis of the incompressible
Euler equations recently carried out by De Lellis and Szkelyhidi (see [3]-[4]) and based on a revisited ”h-
principle”.

References

[1] Chiodaroli, E.: A counterexample to well-posedeness of entropy solutions to the compressible Euler system,
Preprint,2011
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On the long-time behavior of 2D dissipative Euler equations

Luigi C. Berselli
Dipartimento di Matematica Applicata “U.Dini,” Università degli Studi di Pisa

berselli@dma.unipi.it

We study the long-time behavior of the 2D dissipative Euler equations

∂tu+ χu+ (u ·∇)u+∇p = f in Ω×]0, T [, (1a)

∇ · u = 0 in Ω×]0, T [, (1b)

u · n = 0 on ∂Ω×]0, T [, (1c)

as those considered in [1,2]. In particular, to construct certain attractors, we will study carefully the transport
equation for the vorticity. This approach allows to characterize the long-time behavior in a way alternative to
[2,3], since properties will be completely independent of the viscosity and on vanishing viscosity approximations.
The classical solutions of the transport equation will give the way to identify, with tools similar to [4], strong
attractors in the phase space.

References
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[3] A. A. Ilyin, A. Miranville, and E. S. Titi, Small viscosity sharp estimates for the global attractor of the
2-D damped-driven Navier-Stokes equations, Commun. Math. Sci. 2 (2004), pp. 403–426.
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The vanishing viscosity limit for Navier-Stokes equations in bounded domain with
slip boundary conditions

Stefano Spirito
University of L’Aquila

spiritostefano@gmail.com

In this talk we present a result regarding the vanishing viscosity problem in a bounded domain Ω ⊂ R3 for the
incompressible Navier-Stokes equations. By assuming the following particular boundary conditions of Navier’s
type {

ω × n = 0

u · n = 0,

where ω is the vorticity and n is the unit normal to the boundary, we prove the convergence of the inviscid limit
of the Leray-Hopf weak solutions to the unique local smooth solutions of the Euler equations. Moreover, we
show that with a particular choice of initial datum a better rate of convergence in the energy norm is obtained.

References

[1] L. C. Berselli, S. Spirito, On inviscid limits for the Navier-Stokes equations with slip boundary conditions
involving the vorticity, preprint (2011),

Joint work with: Luigi C. Berselli (University of Pisa)

8.3 Session 30 — Room G — Numerical Methods XI
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A posteriori estimates from approximate
solutions of the Euler or Navier-Stokes equations

Livio Pizzocchero
Dipartimento di Matematica, Università di Milano and INFN, Sez. di Milano

livio.pizzocchero@unimi.it
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This communication deals with the Cauchy problem for the incompressible Euler or Navier-Stokes (NS) equa-
tions on a d-dimensional torus Td, in a setting based on the Sobolev spaces Hn(Td) (n > d/2 + 1; typically,
d = 3).

Following [1], an approach will be presented to obtain fully quantitative information on the exact solution
u of the Euler or NS Cauchy problem from a posteriori analysis of any approximate solution ua.

This approach allows to derive estimates on the interval of existence [0, T ) of the exact solution u, and
on the Sobolev distance between the exact and the approximate solution. The latter estimate has the form
||u(t) − ua(t)||n ≤ Rn(t) where Rn(t) is a real, nonnegative function of time t, obtained solving a differential
“control inequality”. In particular, the exact solution u of the Cauchy problem is granted to be global in time
if the control inequality has a global solution Rn : [0,+∞) → [0,+∞).

The quantitative implementation of the above setting requires accurate estimates on the constants in a
number of inequalities, in the Sobolev setting for the Euler/NS equations. For example, it is necessary to use
estimates [2] on the constants in the celebrated Kato inequality for 〈(v•∇)w|w〉n (with v, w two velocity fields).

The above scheme will be compared with the setting proposed by Chernyshenko et al [3] for the approximate
solutions of the Euler or NS equations (and with other works on this subject by Morosi and Pizzocchero [4][5]).

Finally, as an application, some results will be presented on the Euler or NS equations on T3 with the
Behr-Nečas-Wu initial datum [6]; such a datum was proposed by the cited authors as a candidate for finite-time
blow-up of the Euler equations.
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[6] E. Behr, J. Nečas, H. Wu, On blow-up of solution for Euler equations, ESAIM: M2AN 35 (2001), 229-238.

Joint work with: Carlo Morosi (Dipartimento di Matematica, Politecnico di Milano).
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High-order accuracy, entropy stability and convergence for finite difference
methods for hyperbolic conservation laws

Ulrik Skre Fjordholm
ETH Zürich

ulrikf@sam.math.ethz.ch

Session 30 — Room G — Numerical Methods XI



HYP2012 — Book of Abstracts 121

We consider systems of hyperbolic conservation laws in one dimension,

ut + f(u)x = 0. (1)

As solutions of (1) develop discontinuities over time, the equation must be interpreted weakly. To single out
the physically correct solution from the (large) set of weak solutions, one enforces the entropy condition

η(u)t + q(u)x ≤ 0 (2)

for all entropy pairs (η, q).
Our strategy is to mimic this procedure in a discrete setting, with the aim of designing high-order accurate

finite difference methods

d

dt
ui +

1

∆x

(
Fi+1/2 − Fi−1/2

)
= 0 (3)

that converge to the entropy solution. Specifically, in [1], we design entropy stable methods – finite difference
methods that satisfy a discrete entropy inequality

d

dt
η(ui) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
≤ 0 (4)

for any given entropy pair (η, q). We utilize the high-order accurate entropy conservative methods of [2],
along with an ENO (Essentially Non-Oscillatory) reconstruction in entropy variables v(u) := ∇η(u), to obtain
high-order accurate, computationally effective, parameter-free FD methods.

To conclude that the method converges strongly one needs a bound on the spacial variation of the solution,
in addition to an L∞ bound. This comes in the form of a weak TV (total variation) bound. The entropy
stability of our method implies a seemingly weaker bound, formulated in terms of reconstructed values. We
show that for certain orders of reconstruction, this bound is enough to obtain weak TV bounds. Through a
compensated compactness argument we conclude that our method converges strongly to a weak solution of (1).
References

[1] U. S. Fjordholm, S. Mishra and E. Tadmor: Arbitrarily high-order essentially non-oscillatory entropy
stable schemes for systems of conservation laws. Accepted in SINUM (2012).
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Joint work with: Siddhartha Mishra (ETH Zürich) and Eitan Tadmor (CSCAMM, University of Maryland).
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An adaptive moving finite volume scheme for shallow water equations with dry
and complex topography

Guoxian Chen
Division of Numerical Mathematics, IGPM, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany

gxchen@igpm.rwth-aachem.de

An adaptive moving finite volume (AMFV) scheme with unconstructed triangular meshes is proposed for the
simulation of shallow water equations with dry and complex topography. Unlike traditional schemes involving
fixed or refined meshes, its iteration process from ν to ν+1 adaptively moves a fixed number of meshes according
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to flow variables calculated in prior solutions and then simulating flow variables on the new meshes. At each
time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement equation to
shift the vertices from 0xn,0

ij to 0xn,+∞
ij , geometrical conservative interpolation to remap the flow variables from

0Un,0
i to 0Un,+∞

i , and Harten-Lax-van Leer-based partial differential equations discretization to update the flow

variables from 0Un,+∞
i to 0Un+1,0

i . Two analytical and two experimental test cases are presented to verify the
advantages of the proposed scheme over nonadaptive methods. The results reveal two attractive features: this
scheme enables high-accuracy, high-resolution shock-capture of dam-break inundation over dry and complex
topography with minimal computational cost, while satisfying well-balanced, positivity-preserving properties,
and it improves the capability of shallow water equations for handling non-hydrostatic pressure problems by
realizing streamwise meshes parallel to the spatial distribution of time-variant streamlines.

∗ ∗ ∗
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Grid adaptivity for systems of conservation laws

Matteo Semplice
Università Statale di Torino
matteo.semplice@unito.it

The approximation of solutions of conservation laws over large domains, especially when complex wave structures
emerge, depends crucially on the grid size that one can work with. In this respect, the possibility of concentrating
the computing power on the important features of the solution, adapting the grid to the solution itself, as the
evolution of shocks and waves proceeds, can yield important computational savings.

In this talk I will describe the work I’ve been doing with G. Puppo on grid adaptive techniques for systems
of conservation laws. I will touch upon the obvious questions that arise when using cells of different sizes in a
high order finite volume scheme: how to maintain conservativity, how to select the timestep respecting the CFL
condition, how to ensure that shocks or other waves will not be deformed or reflected crossing a discontinuity
in the grid.

In particular, we present a numerical method for a system of conservation laws, based on a single (nonuni-
form) grid, stored in a tree. The depth of the nodes in the tree determines the size of the corresponding cell and
visiting all the leaves of the tree means traversing all the currently active cells of the grid. Time advancement
is achieved either globally (selecting a timestep satisfying a global CFL condition) or with local timestepping
techniques, with a timestep that varies from cell to cell, while maintaining conservativity [1,2]. We present a
comparison of the different approaches, with respect to errors and computational times.

The second step is to introduce grid adaptivity, for which we employ the entropy residual as an indicator
[1]. We discuss the accuracy on smooth and nonsmooth problems, using a number of numerical fluxes and flux
limiters. 2D applications developed with the DUNE library[3] will be shown.
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8.4 Session 31 — Room H — Numerical Methods XII

S31 – Numerical Methods XII – Room H, 17.20–17.50

Multi-Level Monte Carlo finite volume methods for nonlinear systems
of stochastic conservation laws in multi-dimensions

Jonas Šukys
ETH, Zürich

jonas.sukys@sam.math.ethz.ch

We extend the Multi-Level Monte Carlo (MLMC) algorithm in order to quantify uncertainty in the solutions of
multi-dimensional hyperbolic systems of conservation laws with uncertain initial data, sources and coefficients.
The algorithm together with the novel load balancing procedure is presented in a software named ALSVID-UQ
and the scalability on the massively parallel hardware is verified. Numerical simulation results of uncertain
solutions of the Euler equations, ideal magnetohydrodynamics (MHD) equations and shallow water equations are
reported; furthermore, new simulations of acoustic and linear elasticity equations with uncertain log-Gaussian
material coefficients are investigated. In particular, numerical experiments showing the robustness, efficiency
and scalability of the proposed algorithm are presented.

[1] S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems
of conservation laws in multi-dimensions, J. Comp. Phys., 2011 (to appear).

Available from: http://www.sam.math.ethz.ch/reports/2011/02.

[2] S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo Finite Volume Methods for hyperbolic
conservation laws with random initial data, Math. Comp. (to appear).

Available from: http://www.sam.math.ethz.ch/reports/2010/24.

[3] J. Šukys, S. Mishra, and Ch. Schwab, Static load balancing for multi-level Monte Carlo finite volume
solvers, Parallel Processing and Applied Mathematics 9th International Conference, PPAM 2011, Torun,
Poland, 2011 (to appear).
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Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems

Maya Briani
Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche

m.briani@iac.cnr.it
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We introduce new finite differences schemes to approximate one dimensional dissipative semilinear hyperbolic
systems with a BGK structure. Using accurate analytical time-decay properties of the local truncation error, it
is possible to design schemes based on standard upwinding schemes, which are increasingly accurate for large
times when computing small perturbations of constants asymptotic states.

Consider the class of one dimensional BGK systems, which are given for f i ∈ Rk, i = 1, ...,m, by the
equations {

∂tf i(x) + λi∂xf i = Mi(u)− f i,

u :=
∑m

i=1 f
i.

Here x ∈ R and t > 0, and the functions Mi = Mi(u) ∈ Rk are smooth functions of u such that:
∑m

i=1 Mi(u) =
u.

To obtain the time decay rates of these solutions, we need to rewrite the problem in more suitable coordinates.
Following [1], we rewrite the BGK systems in its conservative-dissipative form for the new unknowns

Z = (u, Z̃)T .

It is proved in [1] that, under some dissipativity conditions and for initial data which are small and smooth
in some suitable norms, the time decay of the global solutions, for large times and in the L∞-norm, is given by

∂l
xu = O(t−1/2−l/2), ∂l

xZ̃ = O(t−1−l/2),

and similar estimates are available for their time derivatives. Notice that the improved estimate for Z̃ can only
be obtained in these new coordinates.

The aim of this work it to take advantage of these precise decay estimates to build up more accurate
numerical schemes. To be more specific, we shall show that for standard numerical schemes, for instance
upwind schemes with the source term approximated pointwise by the standard Euler scheme, the truncation
error has the following decay as t → +∞:

Tu(x, t) = O(∆x t−3/2) +O(∆t t−3/2), TZ̃(x, t)) = O(∆x t−3/2) +O(∆t t−3/2).

It can be seen numerically that the corresponding absolute error, for a fixed space step, decays as

eu(t) = O(t−1/2), ez(t) = O(t−1),

which implies that the relative error is essentially constant in time.
Here, our main goal is to improve the decay estimates on the truncation order to achieve an effective decay

in time of the relative error, both in u and Z̃. To obtain this result, using the estimates in [1], we perform a
detailed analysis of the behavior of the truncation error for a general class of schemes, which generalize those
introduced in [2]. Thanks to this analysis, we are able to select some schemes such that the truncation order
behaves as

Tu(x, t) = O(∆x t−2), TZ̃(x, t)) = O(∆x t−2),

for a fixed CFL ratio and such that the numerical error observed in the practical tests improves of t−1/2 on
other schemes.
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A multiscale method for compressible liquid-vapor flow with surface tension

Christoph Zeiler
University of Stuttgart

christoph.zeiler@mathematik.uni-stuttgart.de

We consider a compressible fluid in an open bounded domain Ω ⊂ Rd with d ∈ {1, 2, 3}. It can appear either in
a liquid or in a vapor phase. For any time t > 0, we assume that Ω splits up into the union of two open domains
Ωvap(t), Ωliq(t), which contain the two bulk phases, and a phase boundary Γ(t) that separates the two bulks.
In the two bulk phases we assume that the dynamics of the fluid is governed by the isothermal Euler equations

ρt + div(ρv) = 0,
(ρv)t + div (ρv ⊗ v + p(ρ) I) = 0,

(1)

for t > 0 and x ∈ Ωvap(t)∪Ωliq(t). Here ρ = ρ(x, t) > 0 denotes the unknown density field and v = v(x, t) ∈ Rd

the unknown velocity field. The given function p = p(ρ) is a non-monotone equation of state, e.g. the Van-der-
Waals pressure. The phase boundary between liquid and vapor phase is represented by the (dynamic) sharp
interface Γ(t) ⊂ Rd at time t > 0. Let σ denote the speed of the phase boundary in normal direction n. Across
the interface the trace conditions

[[ρ(v · n− σ)]] = 0, (2)

[[ρ(v · n− σ)v + p(ρ)n]] = (d− 1)γκn, (3)

have to be satisfied. Condition (2) ensures local conservation of mass across Γ(t). Relation (3) corresponds
to a dynamical version of the Young-Laplace law for static phase boundaries. The surface tension coefficient
γ > 0 is assumed to be constant and κ denotes the mean curvature of the phase boundary Γ(t) associated
with orientation given through the choice of the normal n. We treat this free boundary value problem with a
heterogeneous multiscale method in the sense of [1]. Further results has been published in [3]

On the microscale we consider the fluid dynamics at the phase boundary, more precisely around a segment
of the phase boundary. The governing equations are (1), (2) and (3). The local view on the interface allows
us to reduce microscale problems to Riemann type problems. We will present a new microscale solver where
effects of surface tension are included via relation (3). A modified pressure function together with Liu’s entropy
criterion (cf. [4]) will determine a unique wave solution, similar to the approach in [6].

The macroscale domain is divided in time-dependent liquid and vapor domains Ωvap(t), Ωliq(t) and we use
standard fluid solvers for (1) in the single phase areas. More complicated is the coupling of the scales and
the correct treatment of the interface. For communication of the fluid variables ρ and v between macro- and
microscale we use a ghost fluid like approach, cf. [5]. The dynamics of the phase boundary is treated with an
additional level set equation

φt + (σ n) ·∇φ = 0

for t > 0 and x ∈ Ω. In particular we, drive the level set function φ = φ(x, t) ∈ R with the interface speed σ,
available from the microscale solver. The curvature κ in (3) is estimated applying the zero level of φ.

Multidimensional numerical examples will show how surface tension affects the behavior of bubbles respec-
tively droplets of real fluids. We validate on stationary two phase solutions (cf. [2]) and show experimentally
the order of convergence.
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A model for shock wave chaos

Aslan Kasimov
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
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We propose the following simple model equation that describes chaotic shock waves:

ut +
1

2

(
u2 − uus

)
x
= f (x, us) .

It is given on the half-line x < 0 and the shock is located at x = 0 for any t ≥ 0. Here us (t) is the shock state and
f is a given source term [1]. The equation is a modification of the Burgers equation that includes non-locality
via the presence of the shock-state value of the solution in the equation itself. The model predicts steady-state
solutions, their instability through a Hopf bifurcation, and a sequence of period-doubling bifurcations leading to
chaos. This dynamics is similar to that observed in the one-dimensional reactive Euler equations that describe
detonations. We present nonlinear numerical simulations as well as a complete linear stability theory for the
equation.
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Metastable and interface dynamics for the parabolic Burgers equation and for the
hyperbolic Jin-Xin system

Marta Strani
Dipartimento di Matematica Guido Castelnuovo, La Sapienza, Roma
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This study concerns the slow motion of internal shock layer of the initial boundary value problem for the scalar
viscous Burgers equation

∂tu+ ∂xf(u) = ε ∂2
xu

and for the scalar hyperbolic-parabolic Jin-Xin system





∂tu+ ∂xv = 0

∂tv + ∂xu =
1

ε
(f(u)− v)

where the space variable x belongs to a bounded interval I = (−:, :). We are interested on metastable dynamics,
whereby the time-dependent solution approaches its steady state in an asymptotically exponentially long time
interval as the viscosity coefficient ε > 0 goes to zero. To study such behavior, we construct a one-parameter
family of approximate stationary solutions {Uε(·; ξ)}ξ, where the parameter ξ describes the position of an
internal shock layer. By linearizing around these family, we derive an ODE for the location of the interface,
and we estimate rigorously the size of the layer location ξ.
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In rivers, mean sediment discharge may represent several hundred cubic meters of gravels or silt per year.
Therefore, the sediments must be taken into account in order to predict the river bed evolutions and have huge
environmental and industrial impacts. This work focuses on the modelling of bedload transport which refers to
gravel transport and pushes aside the transport of fine sediments by suspension. Up to now, one very classical
approach is to consider the shallow water equations for the fluid and to approximate the solid phase equation
by a simplified one, the well-known Exner equation, that is obtained by writing a mass conservation on the solid
phase in interaction with the fluid, without considering dynamic effect in the solid phase. The coupled model
stands in 1d :

∂H

∂t
+

∂Q

∂x
= 0, (1)

∂Q

∂t
+

∂

∂x

(
Q2

H
+

g

2
H2

)
= −gH

∂zb
∂x

, (2)

∂zb
∂t

+
1

1− p

∂Qs

∂x
= 0, (3)

where Q = Hu is the water discharge, H is the water height, zb is the bed elevation, Qs is the bed load
and p is the porosity of the gravel bed. The bed load may be expressed by empirical formula of the form
Qs = Ag(u)|u|m−1u where u is the velocity in the fluid (Grass formula) or Qs = f(τb) where τb is the boundary
shear stress (see for example Meyer-Peter and Muller, Einstein or Engelund and Fredsoe formulas).

Robust and accurate numerical schemes are now available for the fluid part, see for example [1]. But the
numerical simulation of the coupled model is still an open question. In most of the industrial codes, the system
is solved by coupling two distinguished numerical codes, one for the fluid phase and one for the solid phase. This
approach allows the user to use existing works but is not stable [2] and some recent works have been devoted
to the derivation of robust coupled approach [2,3,4]. In this note, we would like to present a new relaxation
solver that allows us to give a unified framework to handle the problem whatever the sediment flux Qs. The
heart of the method is to relax the fluid pressure and the sediment flux and to consider a larger five by five
linearly degenerate hyperbolic system. We present the derivation of the relaxation model and the details of the
relaxation solver. We also extend the approach to second order accuracy and to wet/dry transition. Then we
test the ability of the method for classical numerical test cases. Finally we investigate two main perspectives
: first, we consider a more general relaxation model that allows us to preserve some equilibrium states and
second, we consider a more general coupled model [5], that includes dynamic effects for the solid phase, and we
show how to use our relaxation framework to deal with this new approach.
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Relative entropy for the finite volume approximation of hyperbolic systems with
relaxation
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We consider a system of (n+m)-dimensional balance laws with dissipative source term






∂t

(
u

v

)
+ ∂xF

(
u

v

)
=

1

ε

(
0,

R(u, v)

)
, t > 0, x ∈ R,

(
u

v

)
(x, 0) =

(
u0

v0

)
(x), x ∈ R.

(1)

Following [5], we assume that the equilibrium manifold associated to the stiff source term R satisfies

R(u, v) = 0 ⇔ v = veq(u),

so that the vector of the conserved quantities u ∈ Rn is close to the solution u of the so-called equilibrium
problem 




∂tu+ ∂xPF

(
u

v

)
eq = 0,

u(x, 0) = u0(x),

(2)

where P : Rn+m → Rn is defined by P
(

u
v

)
= u.

The purpose of this work is to determine error estimates between the smooth solution of (1) and the
approximate solution of the equilibrium model (2) given by finite volume schemes. Estimates in ε between the
smooth solutions of (1) and of (2) are given in [9], using the relative entropy [4]. Error estimates for finite
volume schemes are derived in [3,6,7], but in the scalar case. Therefore, we adapt these estimates to the case of
the approximation of systems (1) and (2) using again the relative entropy, in order to merge in a same framework
the errors in ε and in ∆x.

The aim is to use such local error estimates to carry out model adaptation as it is presented in [1,2,8]. It
consists in automatically detecting the part of a computational domain where the model (1) can be replaced by
the simpler model (2), at the numerical level.
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New Entropy Satisfying and Accurate Approximate Riemann Solvers based on
the Suliciu Relaxation Approach
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We are interested in the numerical approximation of the entropy solutions of the gas dynamics equations in
Lagrangian and Eulerian coordinates with general pressure closure laws. The celebrated Godunov’s method
is an example of conservative and entropy satisfying numerical strategy that provides good approximations.
A key ingredient of this method is the resolution at each mesh interface of the so-called Riemann problem,
which consists in the resolution of the governing equations with an initial condition made of two constant states
separated by a discontinuity. In the classical Godunov’s method, the Riemann problems are solved exactly,
which may be expensive for general pressure laws.

In order to reduce the computational cost of the Godunov’s method, Approximate Riemann Solutions (ARS)
are introduced and used in place of the exact Riemann solutions. Among the well-known ARS (see for instance
[7]), and without any attempt to be exhaustive, are the Harten-Lax-Van Leer’s ARS, the Jin-Xin’s ARS [8] and
the ARS based on a Sulicu’s pressure relaxation [9] (see also [5], [4], [3], [1]...) These so-called Approximate
Godunov’s methods are shown to be positivity preserving and entropy satisfying.

It turns out however that none of these ARS is able to provide exact Riemann solutions in the simple case
of an isolated entropy shock wave. More precisely, if the exact Riemann solution simply consists of an isolated
shock wave separating two constant states and propagating with a velocity given by the Rankine-Hugoniot
relations, then the Approximate Riemann Solution is actually an approximation in the sense that it does not
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coincide with the exact solution. In this work, our objective is to propose an ARS that is able to exactly
calculate such simple solutions.

More precisely, we present a new class of ARS for the gas dynamics equations in Lagrangian and Eulerian
coordinates with general pressure laws. The design of these new ARS relies on a generalized Suliciu’s pressure
relaxation approach. They give by construction the exact solutions for isolated shock discontinuities. They
are proved to be positivity preserving and entropy satisfying under a classical CFL restriction. Motivated by
a former work [2], all these approximate solutions are used to develop new Godunov-type methods generating
infinitely sharp discrete shock profiles. The results extend to the gas dynamics setting a recent work [6] devoted
to the Jin and Xin’s relaxation method in the scalar framework.
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The Riemann problem for three-phase flow
in virgin reservoirs for general permeabilities
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We focus on a system of two conservation laws representing a large class of models of immiscible flow in porous
media relevant for petroleum engineering. The Riemann solutions are found for a range of initial conditions
important in applications, involving the injection of two fluids (water, gas) into a horizontal reservoir containing
a third fluid (oil) to be displaced.

Despite loss of hyperbolicity, the solution for each data exists and is unique. Also, it depends L1 continuously
on the Riemann data. Such solutions always present a lead shock involving one of the injected fluids and the
fluid already present. There is a threshold solution separating solutions according to which of the injected fluids
is present in the lead shock.

This class of solution was discovered for a particular model with quadratic permeabilities in [1]. However,
general models considered here possess non-local shock curves [2], a novel feature. Another distinction from
the previous work is the nature of the threshold solution. In all models the threshold solution consists of a
1-rarefaction starting at the left Riemann datum and finishing at a left 1-characteristic generalized 2-Lax shock
that jumps to the right Riemann datum. The particular case presented in [1] was easier, because this threshold
lied naturally on a straight line, which is not the case for the general solution presented here. We perform this
analysis utilizing results in [3] on the umbilic point.
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We propose a finite volume method to study the Buckley leverett equation with polymer flooding in the presence
of gravity, The system of eqautions is given by

st +∇ · F (s, c, x) = 0

(sc)t +∇ · (cF (s, c, x)) = 0

where s = s(x, t) , c = c(x, t) , (x, t) ∈ R2 × (0,∞) are saturation of water and concentration of the polymer
respectively and the flux function, F (s, c, x) ∈ R2 is given by

F (s, c, x) = [v(x)− (ρw − ρo)gλo(s)K(x)ŷ] f(s, c)

f(s, c) =
λw(s, c)

λw(s, c) + λo(s)

where ρw, ρo are the densities of water and oil, g is the acceleration due to gravity and ŷ = [0, 1] is the unit vector
pointing in the positive y-direction (opposite to gravity), K(x) is the absolute permeability of the rock, λw(s, c)
and λo(s, c) are mobilities of water and oil respectively. The velocity v which is assumed to be incompressible,
is given by

v = −(λw + λo)K∇p− (λwρw + λoρo)gKŷ.

This problem was studied in [4] numerically in the abscence of gravity. In the presence of gravity, the exact
Riemann solver for this problem is too complicated due to the fact that we have to deal with a system of two
variables and the permeability K could be discontinuous in the space variable. The presence of gravity also
complicates the solution since the flux is no longer monotone and can also change sign. Here by using the idea of
discontinuous flux in the space variable [1, 2], a numerical scheme is proposed and implemented. In the equation
for s the dependance of the c variables is taken to lead to a discontinuous flux in the space variable. Then a
Godunov flux called the DFLU flux can be written down for the discontinuous flux using previous ideas from [1,
2]. The discontinuity in permeability K and the effect of gravity is taken account of in a natural way and does
not lead to any complications, with the DFLU flux retaining its very simple form in all cases, and hence being
computationally very efficient. Higher order accurate scheme is constructed by introducing slope limiter in space
variable and a strong stability preserving Runge-Kutta scheme [3] in the time variable. The resulting schemes
are shown to respect a maximum principle. Our numerical results are compared with other standard schemes
on some canonical examples like the quarter 4-spot problem. The results from the exact Godunov flux for the
system case is shown to be close to the results using the DFLU flux on some 1-D problems. The difficulties of
handling the problem in a highly heterogenous media in the presence of gravity attracts the importance of the
proposed work.
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Spectral WENO schemes with Adaptive Mesh Refinement for multi-species
kinematic flow models

Raimund Bürger
Universidad de Concepción, Concepción, Chile

rburger@ing-mat.udec.cl

The sedimentation of a polydisperse suspension with particles belonging to N size classes (species) can be
described by a system of N nonlinear, strongly coupled scalar first-order conservation laws [1]. Its solutions
usually exhibit kinematic shocks separating areas of different composition. A similar system of conservation
laws is given by the multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model [2, 3]. Based on the
so-called secular equation [4], which provides access to the spectral decomposition of the Jacobian of the flux
vector for this class of models, Bürger et al. [5] proposed a spectral weighted essentially non-oscillatory (WENO)
scheme for the numerical solution of the model. In [6] it is demonstrated that the efficiency of this scheme can
be improved by the technique of Adaptive Mesh Refinement (AMR), which concentrates computational effort
on zones of strong variation. Numerical experiments for the cases N = 4 and N = 7 for the polydisperse
sedimentation model [6], and some examples for the MCLWR model are presented.
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Stability, instability and symmetry-breaking bifurcations for the stationary states
of the one-dimensional NLS with a defect

Riccardo Adami
Department of Mathematics and Applications, University of Milan Bicocca

riccardo.adami@unimib.it

One-dimensional nonlinear Schrödinger equation is currently used in order to describe the dynamics of the
so-called cigar-shaped Bose-Einstein condensates. These are ultracold boson gases confined in elongated optical
or magnetic traps, in which all particles lie in the same quantum state. Their effective dynamics han been
proved by Lieb end Seiringer to be one-dimensional. The action of possible inhomogeneities or impurities
can be modeled by adding a point interaction, namely a pointwise condition on the wave function and on its
derivative. Such a condition must fulfil some consistency requirements, in order to guarantee the conservation
of the number of particles and of a suitable notion of energy. Such requirements are satisfied by the whole
class of linear one-dimensional point interactions, defined in the linear case as the self-adjoint extensions of the
laplacian restricted to functions that vanish in some neighbourhood of the origin, and naturally generalized to
the NLS.

The resulting system is usually referred to as the NLS with a defect and shares with the corresponding
linear problem the useful feature of being exactly solvable: stationary states and their energies can be explicitly
computed.

Depending on the particular choice of the point interaction, the system can exhibit the so-called defect modes,
namely, nonlinear stationary states that have no counterpart in the ordinary NLS. Some of such modes can be
interpreted as nonlinear deformations of a corresponding bound state already present in the linear Schrödinger
equation with the same defect.

Once established the existence of the defect modes, it is natural to investigate whether they are stable or not.
If we restrict our scope to power focusning nonlinearities and nonlinear ground states, then the analysis becomes
simpler. Beyond the well-known case of the Dirac’s delta defect, treated in a series of papers by Fukuizumi,
Ohta, Ozawa, Jeanjean, Fibich, Ksherim Sivan, Le Coz, we explicitly studied the cases of a resonant point
interaction, recently highlighted in the literature by Golovaty and Hryniv, and the case of a delta prime-defect.

The latter revealed a particularly rich structure in the family of stationary states, provided with a pitchfork
bifircation with spontaneous symmetry breaking in the ground state. This analysis has been partially extended
to the case of graphs. In order to establish the existence and the stability properties of ground states we used
both Grillakis-Shatah-Strauss’ theory on linear stability and Lions’ concentration-compactness method.
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Selective relaxation model for general fluid systems

Edwige Godlewski
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
edwige.godlewski@upmc.fr

Following a previous work [1] on general fluid models as described by Després in [4], we propose a relaxation
framework for these fluid models, among which we find Euler system and the ideal MHD. Our approach may
be seen as a natural extension of the Suliciu approach [5]. In particular the relaxation is selective. Indeed, the
relaxation approximation procedure of the original system may be performed field by field, in order to preserve
some exact waves of interest. Then, the (non linear) relaxation system may involve only degenerate fields. A
situation we shall refer to as “totally linearly degenerate”.

Following Yong’s results [6][7], several stability properties are proved in order to justify the relaxation
procedure and its efficiency in the numerical approximation of the entropy weak solutions of the equilibrium
system, i.e., of the original nonlinear system of PDEs.

The Godunov scheme is efficient in the case of a totally linearly degenerate system for which the solution of
the Riemann problem is explicit and the resulting scheme for the fluid system is particularly simple. Indeed,
the Godunov solver for the homogeneous relaxation system results in an HLLC-type solver for the equilibrium
system which satisfies discrete entropy inequalities under a natural Gibbs principle, valid under natural sub-
characteristic conditions.

Moreover, the equivalence between the Eulerian and Lagrangian frames permits to derive a numerical method
for the system in Eulerian coordinates with the same nice properties.
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Blow up at the hyperbolic boundary for a system arising from chemical
engineering

Marguerite Gisclon
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We investigate a model arising in chemical engineering and related to gas chromatography. This model
describes an isothermal adsorption process of separation of a gaseous mixture. The common velocity of the
various species is not constant because the sorption effect is taken into account. We give first some results in the
case of two active components for the Cauchy problem in one dimension. Exchanging the roles of the space and
the time variables we obtain a strictly hyperbolic system with a zero eigenvalue. Using a Godunov type scheme
and the Front Tracking Algorithm (cf [4]) we prove existence and uniqueness in the class of piecewise smooth
functions and we find all the entropies (cf [1]-[2]). Our aim (cf [3]) is to construct a solution with a velocity
which blows up at the corresponding characteristic “hyperbolic boundary” (t = 0). It is already known that
systems of two hyperbolic conservation laws may blow up in the L∞ norm and, in literature, there are examples
of blow up for one dimensional strictly hyperbolic systems of PDE’s with at least 3 equations. There is no
example for a 2× 2 strictly hyperbolic system, except the example built by Robin Young (cf [5]), involving two
Burgers equations linearly coupled at the two boundaries. All examples occur in cases where strict hyperbolicity
is lost as the solution explodes. In our example, we also loose the strict hyperbolicity but the blow up takes
place only at the characteristic boundary which becomes twice characteristic and only the velocity blows up.
Our example, although artificial, comes from a realistic chemical model. It illustrates what may occur when
BV regularity is not ensured for the velocity at the physical boundary.
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∗ ∗ ∗

Session 34 — Room A — Theory of Conservation Laws IV



138 14th Int’l Conference on Hyperbolic Problems: Theory, Numerics, Applications

S34 – Theory of Conservation Laws IV – Room A, 18.20–18.50

Using Geometric Singular Perturbation Theory to Understand Singular Shocks

Barbara Lee Keyfitz
Department of Mathematics, The Ohio State University
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There are classes of conservation laws which do not possess Riemann solutions of the standard type (composed of
shocks, rarefactions and linear waves), even in regions where the equations are strictly hyperbolic and genuinely
nonlinear. This is a “large data” phenomenon. For some systems, candidates for solutions of lower regularity,
now called singular shocks, have been postulated [3,4,8]. By means of singular shocks, Riemann problems can
be resolved. However, it is unclear in what sense singular shocks satisfy the conservation law. In this talk, I
expand on work by Stephen Schecter [7] which uses Geometric Singular Perturbation Theory (GSPT) [2] to
prove that approximations to singular shocks satisfy the self-similar Dafermos-DiPerna regularization [1] of the
conservation law system [5]. In addition to demonstrating a mechanism for the approximation, GSPT also
demonstrates the detailed structure of singular shock profiles. Some examples include the classic model, which
gave rise to the discovery of singular shocks, of gas dynamics with the wrong variables conserved. In addition,
singular shocks occur in a recent model in chromatography [6], and GSPT solves this model.
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Global existence of strong solution for shallow water system with large initial
data on the irrotational part

Boris Haspot
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haspot@ceremade.dauphine.fr

The motion of a general barotropic compressible fluid is described by the following system:





∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(µ(ρ)D(u))−∇(λ(ρ)divu) +∇P (ρ) = 0,

(ρ, u)/t=0 = (ρ0, u0).

(1)

Here u = u(t, x) ∈ RN stands for the velocity field, ρ = ρ(t, x) ∈ R+ is the density and D(u) = 1
2 (∇u+t∇u). We

denote by λ and µ the two viscosity coefficients of the fluid, which are assumed to satisfy µ > 0 and λ+2µ > 0.
Such a condition ensures ellipticity for the momentum equation and is satisfied in the physical cases where
λ+ 2µ

N > 0. In the sequel we shall only consider the shallow-water system which corresponds to:

µ(ρ) = µρ with µ > 0 and λ(ρ) = 0.

We supplement the problem with initial condition (ρ0, u0). Throughout the paper, we assume that the space
variable x ∈ RN or to the periodic box TN

a with period ai, in the i-th direction. We restrict ourselves to the
case N ≥ 2.

We are interested in showing the existence of global strong solutions with large initial data on the irrota-
tional part for the shallow-water system. We introduce a new notion of quasi-solutions (see [BH,BH1]) when
the initial velocity is assumed to be irrotational, these last one exhibit regularizing effects both on the velocity
and in a very surprising way also on the density (indeed the density is a priori governed by an hyperbolic
equation). We would like to point out that this smoothing effect is purely non linear and is absolutely crucial
in order to deal with the pressure term as it provides new damping effects in high frequencies on the density.
More precisely we can verifies that (ρ1,−µ∇ ln ρ1) is a quasi solution of the system (1) when P = 0 and with
ρ1 which checks an heat equation. The rest of the proof consists in working around, more precisely we shall
construct solution of the form (ρ, u) = (ρ1 + h2,−µ∇ ln ρ1 + u2). The main difficulty consists in proving the
existence of global strong solution for the system verified by (h2, u2) (we are going to follow some of the ideas of
[CD,arma]), in particular we are going to use the notion of effective velocity in order to obtain suitable damping
effects on the density h2 in high frequencies (we refer to [arma] ).
Our result gives a first kind of answer to the problem of the existence of global weak solution for the shallow-
water system in dimensionN ≥ 2 (which is actually open). We conclude by giving new pointwise decay estimates
on the solution and some new blow-up results for the shallow water system (1) depending only on the behavior
of the density.
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The Limit of the Boltzmann Equation to the Euler Equations for Riemann
Problems

Yi Wang
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wangyi@amss.ac.cn

The convergence of the Boltzmann equaiton to the compressible Euler equations when the Knudsen number
tends to zero has been a long standing open problem in the kinetic theory. In the setting of Riemann solution that
contains the generic superposition of shock, rarefaction wave and contact discontinuity to the Euler equations,
we succeed in justifying this limit by introducing hyperbolic waves with different solution backgrounds to
capture the extra masses carried by the hyperbolic approximation of the rarefaction wave and the diffusion
approximation of contact discontinuity.
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A non singular Vlasov equation for magnetic plasmas
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The mathematical description of laboratory fusion plasmas produced in Tokamaks is challenging. Therefore
it is useful to understand simplified models. Here we consider one of those which keeps both the complexity
of the Vlasov equation for ions and the Hall effect in Maxwell’s equation. Based on energy dissipation, a
fundamental physical property, we can show that the model is nonlinear stable.

The model is





−λ2∆lnne = nI − ne, (a)

∂B

∂t
−∇∧

(
1
ne

nI uI ∧B
)
+∇∧ ( 1

ne
J ∧B)+∇∧ (η∇∧B) = 0, (b)

∂f

∂t
+ v.∇f +

∂

∂v

[(
(−Te

ne
∇ne+

J− nIuI

ne
∧ B) + v ∧B

)
f

]
= 0, (c)

∇ ·B = 0 (d).

(1)

where the following notations are used

J = ∇∧B (the electric current),

nI(t, x) =

∫

R3

f(t, x,v)dv (the number density in ions), (2)

nI(t, x)uI(t, x) =

∫

R3

f(t, x,v)vdv (the macroscopic velocity of ions). (3)

Here η is a positive bounded function which here describes the plasma resistivity, the constant Te is the mean
electron temperature: that is η and Te are parameters of the model. The (small) Debye length is λ.

Mathematical analysis shows that this model is weakly continuous. It is used to build up an approximate
solution which converges to a weak solution since some sharp a priori estimates are satisfied. The mathematical
analysis shows the major asset of keeping the inverse of the electronic density 1

ne
instead of using the trivial but

dangerous simplification nI
ne

≈ 1 in some parts of the model: in particular ne is bounded away from zero and is
more regular than nI ; this is the explanation why this model is non singular. It is key properties to obtain the
theoretical results.
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Boundary singularity for Boltzmann equation

I-Kun Chen
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In Kinetic Theory, it is observed that there is a logarithmic singularity for the fluid velocity around the solid
boundary. This is understood in WKBmodel also supported by computations for linearized Boltzmann equation.
The goal of this talk is to confirm this basic phenomenon, under the setting of thermal transpiration problem,
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for linearized Boltzmann equation for sufficiently large Knudsen number. In addition, we improve the solution
to Gaussian-Like. We use an iterated scheme, with the ”gain” part of the collision operator as a source.
The scheme yields an explicit leading term. The remaining converging terms are estimated through a refined
pointwise estimate and Maxwellian upper bound for the gain part. Our analysis is motivated by the previous
studies of asymptotic and computational analysis.
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Hydrodynamic limit of the Gross-Pitaevskii equation
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University of Cambridge
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In this talk, we consider the hydrodynamic limit of the Gross-Pitaevskii equation with general initial data and
nonconstant density, the limit equation is the anelastic system (generalized incompressible Euler equation) plus
a fast singular oscillating term.
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Optimal control of re-entrant manufacturing systems
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Highly re-entrant semiconductor manufacturing systems may be modeled controlled hyperbolic conservation
laws

∂tρ(t, x) + ∂x (λ(W (t)) ρ(t, x)) = 0 with W (t) =

∫ 1

0
ρ(t, x) dx, (1)

on the semi-infinite strip [0,∞)× [0, 1] with velocity λ(·) ∈ C1([0,+∞); (0,+∞)). For fixed initial data ρ(0, x) =
ρ0(x), 0 ≤ x ≤ 1 the control input is the influx u(t) = λ(W (t))ρ(t, 0), t ≥ 0. The natural control objective is
to minimize the error signal between a given demand forecast yd and the out-flux y(t) = λ(W (t))ρ(t, 1), or in
the case of perishable demand, to minimize the alternate error signal

β(t) =

∫ t

0
yd(s) ds−

∫ t

0
λ(W (s))ρ(s, 1) ds, (2)

while keeping the state ρ(·, x) bounded.
Extending results presented in [1], we analyze the optimal controls for minimizing the error signal in the

L1-norm, and investigate using a push-pull-point as an additional control for systems which may be modeled as
coupled two-stage systems of the above form.
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Asymptotic stabilization
of the hyperelastic-rod wave equation

Giuseppe Maria Coclite
University of Bari

coclitegm@dm.uniba.it
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We investigate the problem of asymptotic stabilization of the hyperelastic-rod wave equation on the real line

∂tu− ∂3
txxu+ 3u∂xu = γ

(
2∂xu ∂

2
xxu+ u ∂3

xxxu
)

t > 0, x ∈ R, (1)

where u(t, x) represents the radial deformation in a cylindrical compressible hyperelastic rod, and γ ∈ R is
some given constant depending on the material and on the prestress of the rod (see Dai [3, 4, 5]). Observe that
if γ = 1, then (1) is the classical Camassa–Holm equation [2, 6] modelling the propagation of unidirectional
shallow water waves on a flat bottom.

The asymptotic stabilizability of the Camassa–Holm equation through a stationary feedback law was recently
established, within the space of H2 solutions, in [7] by means of a forcing term acting as a control, and in [8]
by means of a boundary feedback. Here, we assume γ > 0, and consider the equation (1) with an additional
force term of the form

f : H1(R) → H−1(R), f [u] = −λ(u− ∂2
xxu),

for some λ > 0. With the same approach of [1], we show the existence of a semigroup of global weak dissipative
solutions of the corresponding closed-loop system

∂tu− ∂3
txxu+ 3u∂xu = γ

(
2∂xu ∂

2
xxu+ u ∂3

xxxu
)
+ f [u] t > 0, x ∈ R, (2)

defined for every initial data u0 ∈ H1(R), and we prove that any such solution decays esponentially to 0 as
t → ∞.
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Joint work with: Fabio Ancona (University of Padova)
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S36 – Control and Geometric Problems for Hyperbolic Equations – Room B, 18.20–18.50

Extensions for systems of conservation laws

Irina A. Kogan
North Carolina State University

iakogan@ncsu.edu

A frame of eigenvectors for the Jacobian Df of the flux f , called eigenfarme, plays an important role in the
analysis of hyperbolic conservation laws ut + f(u)x = 0 in one space variable. We start by reviewing our
earlier results on constructing systems with a prescribed eigenframe [1]. Those systems of conservation laws
are determined by solving a certain algebraic-differential “λ-system” for the associated eigenvlaues. We next
consider the question of how many extensions the resulting systems have. We show how these can be determined
by solving a related algebraic-differential “β-system.” The unknowns in the latter system are the lengths of the
given eigenvectors as measured with the metric determined by an extension. From these lengths the extension
itself can be found by quadrature. Our analysis goes one step further than determining whether extensions exist
or not. By analyzing the β-systems we obtain information about how many extensions there are. More precisely,
we determine on how many arbitrary functions and/or constants extensions of any conservative system with a
prescribed eigenframe depend.

[1] Helge Kristian Jenssen and Irina A. Kogan, Conservation Laws with Prescribed Eigencurves, J. of Hyper-
bolic Differential Equations, Volume 7, no.2 (2010), pp. 211-254

[2] Helge Kristian Jenssen and Irina A. Kogan, Extensions for systems of conservation laws, Communications
in PDEs, to appear.

Joint work with: Helge Kristian Jenssen (Pennsylvania State University)
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On a nonlocal hyperbolic conservation law arising from a gradient constraint
problem

Paulo Amorim
CMAF - University of Lisbon
pamorim@ptmat.fc.ul.pt

In some models involving nonlinear conservation laws, physical mechanisms exist which prevent the formation of
shocks. This gives rise to conservation laws with a constraint on the gradient of the solution. We approach this
problem by studying a related conservation law with a spatial nonlocal term. We prove existence, uniqueness
and stability of solution of the Cauchy problem for this nonlocal conservation law. In turn, this allows us
to provide a notion of solution to the conservation law with a gradient constraint. The proof of existence is
based on a time-stepping technique, and an L1-contraction estimate follows from stability results of Karlsen
and Risebro.
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9 Abstracts of contributed lectures — Thursday 9.15–9.45

9.1 Session 37 — Room F — Numerical Methods XIII

S37 – Numerical Methods XIII – Room F, 9.15–9.45

Analysis of Asymptotic Preserving schemes with the modified equation

Bruno Després
LJLL-UPMC

despres@ann.jussieu.fr

Introduction
Consider the hyperbolic heat equation in dimension one x ∈ R

∂tuε +
1

ε
∂xvε = 0, ∂tvε +

1

ε
∂xuε = − σ

ε2
vε. (1)

To fix the notation with will consider that 0 < ε ≤ 1 is the scaling parameter which can takes value arbitrarily
in ]0, 1]. The other coefficient is 0 < σ ≤ 1. The formal asymptotic limit of (1) writes ∂tu− 1

σ∂xxu = 0.
Asymptotic Preserving techniques [1], [2] and [4] are very useful to control the accuracy of discretization

methods in transitional regimes where ε covers the whole range ]0, 1]. This family of methods and schemes
are particularly appealing for the numerical discretization of physical problems with very different scales, from
microscopic scale to macroscopic scale. Essentially it amounts to design numerical methods such that the
numerical error goes to zero with the mesh size ∆x uniformly with respect to the small parameter ε. However
the a priori understanding of the structures of these numerical methods is not so easy.

This presentation will be devoted to show that the modified system






∂tûα,ε +
M

ε
(∂xv̂α,ε − α∂xxûα,ε) = 0,

∂tv̂α,ε +
M

ε
(∂xûα,ε − α∂xxv̂α,ε) = −σM

ε2
v̂α,ε,

(2)

where the ”Magic” coefficient is defined by M = ε
ε+σα displays interesting theoretical properties that can be

used to reach a better understanding of A.P. schemes for (1). The coefficient α stands for the underlying
numerical diffusion, that is α ≈ ∆x

2 in the context of the modified equation.
The main theoretical result is the following: for well prepared data, solutions of (2) are uniformly close to

solutions of the initial system (1) in the sense that

‖uε(t)− ûα,ε(t)‖L2(R) + ‖vε(t)− v̂α,ε(t)‖L2(R) ≤ Cα, t ≤ T. (3)

This estimate is uniform with respect to α and show no dependency with respect to any negative powers of
ε: that is C is bounded from above independently of ε. We will show that the Gosse-Toscani [1] is naturally
compatible with (2). We refer to the recent work [3] for a fully discrete proof of (3). Numerical examples will
illustrate the theoretical properties.
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Two-waves PVM-WAF type method for non-conservative systems

Manuel J. Castro Dı́az
Universidad de Málaga. Dpto. Análisis Matemático

castro@anamat.cie.uma.es

In this work a new two-waves WAF (Weighted Average Flux) type method for non-conservative systems is
presented. WAF method was introduced by Prof. E. F. Toro in [6]. The extension to the multidimensional
case was performed by Billet and Toro in [1], and more recently to unstructured meshes [5]. There are also
many works related to the applications of the WAF method to conservative systems and balance laws: see for
example [7-8] and [4].

The two-waves PVM-WAF scheme that we introduce here is defined in terms of a suitable non-linear com-
bination of two different PVM (Polynomial Viscosity Matrix) and it has the property that it is second order
accurate for smooth solutions for general 1D hyperbolic systems, while the original two-waves WAF method
only guarantees this accuracy for 2× 2 1D systems. Let us recall that PVM schemes have been introduced by
the authors in the framework of balance laws and non-conservative hyperbolic system in [2]. They are defined
in terms of viscosity matrices computed by a suitable polynomial evaluation of a Roe matrix. These methods
have the advantage that they only need some information about the eigenvalues of the system to be defined,
and no spectral decomposition of Roe Matrix is needed. These methods can be seen as a generalization of the
schemes introduced by Degond et al. in [3].

An efficient implementation on GPUs is also discussed and some numerical tests will be presented to check
the good properties of the new scheme.
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[8] E.F. Toro. The weighted average flux method applied to the time dependent Euler equations. Philos.
Trans. R. Soc. Lond. A 341 (1992) pp. 499530.

Joint work with: Enrique Fernández-Nieto (University of Sevilla. Dpto. de Matemática Aplicada.), Gladys Narbona
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9.2 Session 38 — Room B — Navier-Stokes and Euler Equations V
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Boundary layer problem: Navier-Stokes equations and Euler equations

Nikolai, Vasilievich Chemetov
CMAF/University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal

chemetov@ptmat.fc.ul.pt

This talk is concerned with the boundary layer turbulence. We consider an incompressible viscous fluid in
domains with permeable walls. The permeability is described by the Navier slip boundary conditions.

The goal is to study the fluid behavior at vanishing viscosity. We show that the vanishing viscous limit is a
solution of the Euler equations with the Navier slip boundary conditions on the inflow region of the boundary.
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Low Mach Number Singular Limits of the Compressible
Navier-Stokes-Smoluchowski System

Joshua Ballew
University of Maryland
jballew@amsc.umd.edu
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The Navier-Stokes-Smoluchowski system models the behavior of fluid-particle interaction in physical situations
in which particles interact with fluids under forces such as gravity and buoyancy. Such models arise in applica-
tions to medicine, biotechnology, and atmospheric science, among other fields. The system under investigation
in this work describes the evolution of particles dispersed in a viscous compressible fluid and is expressed through
the conservation of fluid mass, the balance of momentum and the balance of particle density often referred as
the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag
forces that the fluid and the particles exert mutually by the action-reaction principle. The governing equations
form the so-called Navier-Stokes-Smoluchowski system (NSS). In this presentation, I briefly cover the existence
of suitable weak solutions as outlined in [1] as an extension of the existence result in [2]. In addition, approxi-
mations to the NSS model in the form of singular limits are considered. In particular, I look at conditions for
which the speed of the fluid flow is small compared to the speed of sound in the fluid, also known as the low
Mach number case. Under a low stratification condition of the scaling of the system, the solutions converge to a
solution of the mathematically simpler incompressible fluid model as the Mach number approaches zero. In the
strong stratification case, it is expected, at least formally, that the solutions will converge to functions obeying
the anelastic condition. Both of these problems involve using bounds from the energy inequality for the systems
to provide estimates that allow us to show the convergence of the solutions. These techniques are motivated
by the work in [3], [4], and [5]. In the case for strong stratification, we assume that the external forces acting
on the fluid and particles depend only on the vertical component of position, which is physically realizable in
gravitation and buoyancy forces.
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9.3 Session 39 — Room G — Numerical Methods XIV
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Simulation of Poroelastic Wave Propagation using CLAWPACK

Grady Lemoine
University of Washington

gl@uw.edu

We use the CLAWPACK (Conservation LAWs PACKage) finite volume method code [1] to solve Biot’s equa-
tions [2] for dynamics of a porous, fluid-saturated elastic medium. These equations were developed to model
fluid-saturated rock formations, but are also applicable to other porous solids, such as in vivo bone. At low
frequency Biot’s equations are a system of hyperbolic PDEs with a relaxation source term, which may be stiff
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depending on the time scales associated with wave propagation. We discuss the development of a Riemann
solver for orthotropic poroelasticity on arbitrary mapped grids, as well as issues associated with incorporating
the stiff relaxation term. We also show numerical results on Cartesian grids, comparing against recent discon-
tinuous Galerkin results [3], and on logically rectangular mapped grids capable of modeling moderately complex
geometry.
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Hyperbolic explicit-Parabolic linearly implicit finite difference methods for
degenerate convection diffusion equation

Fausto Cavalli
University of Brescia

fausto.cavalli@ing.unibs.it

Convection diffusion equations arise in the modelling of several physical phenomena, ranging from fluid me-
chanics to astrophysics, from semiconductors to reactive flows, in two-phase flow modeling and in phenomena
involving front propagation.

There are several approaches based on finite difference to solve such kind of equations, mostly based on
explicit time integration (see for example [1,2,3] and references therein). One of the most unpleasant feature of
explicit methods is that, to grant stability, the time integration step ∆t has to be proportional to h2, where h is
the spatial discretization parameter. This can be computationally burdensome when a fine spatial discretization
is required or the partial differential equation has to be integrated for a long time. I propose a strategy to
overcome these issues, based on the integration of the convection diffusion equation through suitable Implicit
parabolic-Explicit hyperbolic (IMEX) methods, which are used, for example, in the case of non linear convection
coupled with linear diffusion ([5]). This enables the use of classical non linear reconstruction techniques for the
convective term and to avoid a parabolic constraint on the time step thanks to the implicit handling of the
diffusive term. However, since the implicit diffusion term would require the use of non linear solvers and since
this could be both expensive (due to the high number of iteration needed to grant accuracy) and difficult to
apply (due to the possibly of strong degeneracy of the parabolic term), according to what was accomplished in
the case of parabolic equations in [4], I propose a linearization technique that allows to solve simply a linear
implicit problem. The global scheme is high order accurate and its stability is subjected only to the CFL
stability condition imposed by the hyperbolic term. I present some preliminary theoretical results joint with
numerical simulations that describe the behaviour of the approach.
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Decay rate of convection equations with degenerate diffusion

Christian F. Klingenberg
Mathematics Dept., Würzburg Univ., Germany

klingen@mathematik.uni-wuerzburg.de

We study large-time behaviour of solutions for convection equations with degenerate diffusion. An example of
what we consider is the initial value problem to

ut + (uq)x + cun = (um)xx (1)

where (for non-negative initial data in L1) we get time decay estimates (under certain assumptions) of the type

||u||∞ ≤ K(1 + t)−1/q

with q > 1.
We shall give conditions on the coefficients of more general equations

ut + F (u, x, t)x +H(u, x, t) = G(u, t)xx, (2)

where G(u) may have a finite number of degenerate points, such that for non-negative L1 intial data we show
that the L∞ decay rate of the solutions is given by

||u||∞ ≤ K(1 + t)−1/2. (3)

Our approach is as follows: we first first prove the decay rate of derivative of solutions of such equations.
Using that we obtain the decay rate of solutions of degenerate convection diffusion equations. The analysis
depends on a Lax-Oleinik type estimate.

The second part of the presentation deals with degenerate convection diffusion equation in several space
dimensions, which are of the form

ut = ∆um +
N∑

i=1

fi(u)xi , (4)

with the initial data u(x, 0) = u0(x1, x2, · · · , xN ) ≥ 0. N denotes the space dimension.
We prove the decay rate of derivatives of the solution. We give conditions such that we obtain
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(uq)xi(x, t) ≤
M

(1 + t)α/2

for every i and any t > 0, for 0 < α < 1 and q ≥ a given positive function of m and N .
The first part is a generalization of [1] using a different and simpler technique. Details of our work are

available in [2].
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Entropy solutions via JKO scheme for a class of degenerate convection-diffusion
equations

Marco Di Francesco
Universitat Autònoma de Barcelona

difrancesco@mat.uab.cat

We consider the scalar convection diffusion equation

ut = (a(y)um)y + (um)xx, m > 1, (1)

with a ∈ W 2,∞ and a ≥ c > 0, posed on y ∈ R. By a simple mass preserving change of variables, the equation
(1) is transformed into the equation

ρt = (ρ(a(x)ρm−1)x)x, (2)

which is the formal Wasserstein gradient flow of the functional

F [ρ] =
1

m

∫
a(x)ρmdx. (3)

We shall prove that the JKO scheme (cf. [JKO98,AGS08]) for F produces in the limit a unique solution for
(2) which is an entropy solution in the sense of Kruzkov [Kru70,Car99,KR03] for the original equation (1). The
strategy relies on a slight modification of a flow interchange lemma contained in [MMS09].
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A Discontious Galerkin Method for the Magnetic Induction Equation with Hall
Effect

Paolo Corti
ETH, Zürich

paolo.corti@sam.math.ethz.ch

Fast magnetic reconnection is important in many applications like Solar Physics and the design of plasma
devices. A common modeling framework utilizes the equations of Magnetohydrodynamics (MHD) coupled with
a generalized Ohm’s law that incorporates electron inertia and the Hall effect. The resulting equations include
third-order mixed spatial and temporal derivatives along with the dispersive Hall term. The design of numerical
schemes is challenging on account of the non-linearities and high-order derivatives.

As a preliminary step we consider a model based on the magnetic induction equations together with the
Hall effect and electron inertia. The non-linearity is present in the form of the Hall term. We derives estimates
in H(Curl) which together with the divergence constraint lead to apriori energy estimates. The presence of
resistivity and electron inertia suggests the use of implicit-explicit time integration schemes. The implicitness
of the schemes results in a series of large linear systems to solve at every time step. A discontinuous Galerikn
(DG) discretisation allows to satisfy at the same time an energy estimate and to efficiently precondition the
resulting linear systems using affine spaces. Numerical experiments illustrating the scheme are presented.

Joint work with: Ralf Hiptmair (ETH, Zürich), Siddhartha Mishra (ETH, Zürich).
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Semi-implicit solutions to Radiation-Magnetohydrodynamics

Andrew David McMurry
University of Oslo

a.d.mcmurry@cma.uio.no
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Solutions to the equations of Radiation-Magnetohydrodynamics are of vital importance to many astrophysical
problems, but very few codes for solution of the system exist. We present a finite volume code which solves
the M1 moment model of radiative transfer in conjunction with MHD. The M1 model reduces the directional
dimensionality of the transfer equation. The RMHD system includes wave speeds of the order of the speed of
light, which can be more than 104 times the fastest MHD wave speed in typical problems. In order to be able to
use a timestep size of the same order as that required for MHD, we use a semi-implicit method, where MHD is
solved explicitly as usual and radiative transfer is solved implicitly, using an iterative parallel non-linear system
solver. We present results using grey radiation (averaged over the frequency dimension of the transfer equation).

Joint work with: Siddartha Mishra (University of Oslo), Franz Fuchs

9.6 Session 42 — Room D — PDEs in Mathematical Physics

S42 – PDEs in Mathematical Physics – Room D, 9.15–9.45

On Uniquenes Properties of Solutions to the Benjamin-Ono Equation

Felipe Linares
IMPA, Rio de Janeiro, Brazil

linares@impa.br

This talk is concerned with some special uniqueness properties of solutions to the IVP associated to the
Benjamin-Ono equation. These will be deduced as a consequence of some persistent properties in weighted
Sobolev spaces. In particular, we shall show that the uniqueness results established in [1] do not extend to any
pair of non-vanishing solutions of the BO equation. Also, we shall prove that the uniqueness result established
in [1] under a hypothesis involving information of the solution at three different times can not be relaxed to two
different times.
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Anal. 260 (2011), pp. 436–459.

Joint work with: German Fonseca (UNAL), Gustavo Ponce (UCSB)
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Smoothing effect and Fredholm property
for first-order hyperbolic PDEs

Irina Kmit
Institute of Mathematics, Humboldt University of Berlin,

Rudower Chaussee 25, D-12489 Berlin
kmit@informatik.hu-berlin.de
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We present recent results on regularity and Fredholm properties for first-order one-dimensional hyperbolic
PDEs [1-4]. We show that large classes of boundary operators (appearing in traveling-wave models of laser and
population dynamics and chemical kinetics) cause an effect that smoothness increases with time. This means
that solutions improve smoothness dynamically, more precisely, they eventually become k-times continuously
differentiable for each particular k. This phenomenon allows us to work out a regularization procedure via
construction of a parametrix. We construct parametrices for periodic problems for dissipative first-order linear
hyperbolic PDEs and show that these problems are modeled by Fredholm operators of index zero. Our Fredholm
results cover non-strictly hyperbolic systems with discontinuous coefficients, but they are new even in the case
of strict hyperbolicity and smooth coefficients.
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Remarks on the Theory of the Divergence-Measure Fields

Hermano Frid
Institute for Pure and Applied Mathematics-IMPA, Rio de Janeiro, Brazil

hermano@impa.br

We review the theory of the (extended) divergence-measure fields providing an up to date account of its
basic results established by Chen and Frid (1999, 2002), as well as the more recent important contributions
by Silhavý (2008, 2009). We include a discussion on some pairings that are important in connection with the
definition of normal trace for divergence-measure fields. We also review its application to the uniqueness of
Riemann solutions to the Euler equations in gas dynamics, as given by Chen and Frid (2002). While reviewing
the theory, we simplify a number of proofs allowing an almost self-contained exposition.

∗ ∗ ∗
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S43 – Theory of Conservation Laws V – Room C, 9.45–10.15

Coupling techniques for nonlinear hyperbolic equations.

Benjamin Boutin
IRMAR – Université de Rennes 1, France

benjamin.boutin@univ-rennes1.fr

We analyze the coupling between different nonlinear hyperbolic problems across possibly resonant interfaces,
say at x = 0 considering the one space variable problem:

∂tw + ∂xf
±(w) = 0, t > 0, ±x > 0.

A supplemented coupling condition, modeling the transient exchange of informations at the interface, reads as
the continuity of the unknown w or of a nonlinear transformation u of it, say

u(t, 0−) = u(t, 0+), t > 0.

Such a coupling condition is formulated in a weak form, following [5] and [6]. A difficulty arising with thin
interfaces lies in the fact that the initial value problem, even with apparently well-defined interfaces conditions,
is often ill-posed, so that the thin interface model does not fully determine the dynamics of the relevant solution.

In the present work, we view the coupling interface as a standing wave v for an augmented system of partial
differential equations:

∂tu+A(u, v)∂xu = 0, ∂tv = 0, (1)

The definition of weak solutions for the nonconservative system (1) in the resonant regime has been tackled
via the self-similar vanishing viscosity analysis (see [1] and [4]). In [2], we extend this analysis to systems
under fairly general assumptions and obtain existence of self-similar weak solutions to the Riemann problem for
(1). The internal structure of the coupling interface is also analyzed, and distinct solutions for Riemann data
leading to the resonance phenomena are constructed. Multiplicity of self-similar solutions thus do persist for
this augmented model with thin interface, even with this regularization mechanism.

We propose then another regularization strategy based on thick interfaces for the same augmented system
of partial differential equations (1). The Kružkov’s theory applies and ensures the well-posedness of this thick
interface model. A new well-balanced finite volume scheme approximates its entropy solution, and preserves
the equilibria satisfying the thick coupling condition (see [3]).
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Joint work with: Frédéric Coquel (Centre de Mathématiques Appliquées & Centre National de la Recherche Scientifique,

École Polytechnique, 91128 Palaiseau, France), Philippe G. LeFloch (Laboratoire Jacques-Louis Lions & Centre National

de la Recherche Scientifique, Université Pierre et Marie Curie, Paris 6, 75252 Paris, France)

9.8 Session 44 — Room H — BioFluids Models I

S44 – BioFluids Models I – Room H, 9.15–9.45

Schemes with well-controlled dissipation (WCD)

Jan Ernest
Seminar for Applied Mathematics, ETH Zürich, Switzerland.

jernest@ethz.ch

We study the approximation of entropy solutions to nonlinear hyperbolic conservation laws depending on un-
derlying small scale effects. Such small scale dependent shock waves arise e.g. in non-strictly hyperbolic models
or in nonconservative models. Standard finite difference or finite volume schemes for hyperbolic systems may
fail to converge to the non-classical solutions of above problems. We claim that the equivalent equation can
be used to ensure that non-classical shock waves are approximated correctly. We design a new class of nu-
merical schemes which we call schemes with well-controlled dissipation (WCD), which yields approximations to
the physically relevant solutions and allows for resolving shocks of arbitrary strength. As an introductionary
example we consider the diffusive-dispersive regularization of the cubic conservation law

Ut +
(
U3

)
x
= εUxx + δε2Uxxx

where δ is fixed. It is well established, that as ε vanishes, the solution converges towards a non-classical solution.
We show by means of numerical examples that the WCD scheme converges to the correct non-classical solution
even for shocks of high amplitude. Further applications involving non-classical shocks for elasticity systems and
reduced MHD models will be presented.

Joint work with: Siddhartha Mishra (Seminar for Applied Mathematics, ETH Zürich) and Philippe G. LeFloch (Labo-

ratoire Jacques-Louis Lions, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie)
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Hydrodynamical behaviour for chemotaxis

François James
Mathématiques – Analyse, Probabilités, Modélisation – Orléans (MAPMO),

Université d’Orléans & CNRS UMR 6628,
Fédération Denis Poisson, Université d’Orléans & CNRS FR 2964,

45067 Orléans Cedex 2, France
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Chemotaxis is the phenomenom in which a population of cells rearranges its structure according to some
chemical, called the chemoattractant, present in the environnement. At the kinetic level of description, the
Othmer-Dunbar-Alt model describes the dynamics of bacteria like E. Coli taking into account the run and
tumble process during the motion. Denoting f(t, x, v) the distribution function at time t depending on the
position x and the velocity v ∈ {−c, c}, and S the chemoattractant concentration, the system of equations
writes in one space dimension (see e.g. [2])

{
∂tfε + v∂xfε =

1

ε
(Φ(−v∂xSε)fε(−v)− Φ(v∂xSε)fε(v)),

−∂xxSε + Sε = ρε = fε(v) + fε(−v).

The constant c represents the constant velocity of cells. The parameter ε is a scaling factor and in applications
it is considered as very small (ε < 1). The hydrodynamical limit ε → 0 of this system leads to the following
macroscopic model (see [3]) 





∂tρ+ ∂x(a(∂xS)ρ) = 0,

a(∂xS) = c
Φ(−c∂xS)− Φ(c∂xS)

Φ(−c∂xS) + Φ(c∂xS)
,

−∂xxS + S = ρ.

Introducing the elementary potential K solving −∂xxK + K = δ0, the latter system reduces to the scalar
conservation law

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0. (1)

This equation is known as the aggregation equation and it is now classical that regular solutions blow up in
finite time when K is not smooth. Thus measure solutions have to be considered, together with a suitable
definition of the product a(∂xK ∗ ρ)ρ, when ρ is a measure. Using the framework of duality solutions developed
in [1], as well as a careful strategy to manage the uniqueness of such solutions we are able to give a complete
study of the problem (see [3]), as well as convenient numerical schemes that recover the dynamics of aggregates.
One of these schemes can be recovered from a suitable asymptotic-preserving schemes (with respect to ε) on
the kinetic model .
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Asymptotical Solutions in a Reactive non-ideal Hydrodynamic medium
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Using the weakly non-linear geometrical acoustics theory, we obtain the small amplitude high frequency asymp-
totic solution to the basic equations governing one dimensional unsteady planar, spherically and cylindrically
symmetric flow in a reactive non-ideal hydrodynamic medium. The transport equations for the amplitudes of
resonantly interacting waves are derived. The evolutionary behavior of non-resonant wave modes culminating
into shock waves is also studied.
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A high-order unstaggered constrained transport method for the 3D ideal
magnetohydrodynamic equations based on the method of lines

Bertram Taetz
Department of Mathematics, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany

Bertram.Taetz@rub.de

We study finite volume methods for the 3D ideal magnetohydrodynamic (MHD) equations. Numerical methods
for solving the MHD equations in more than one space dimension must confront the challenge of controlling
errors in the discrete divergence of the magnetic field. One approach that has been shown successful in stabilizing
MHD calculations are constrained transport (CT) schemes. CT schemes can be viewed as predictor-corrector
methods for updating the magnetic field, where a magnetic field value is first predicted by a method that does
not exactly preserve the divergence-free condition on the magnetic field, followed by a correction step that
aims to control these divergence errors. One way to use a CT method without introducing a second (staggered
grid) is by solving an evolution equation for the magnetic potential during each time step and computing a
divergence-free update of the magnetic field by taking the curl of the magnetic potential as first introduced by
Rossmanith [SIAM J. Sci. Comput. 28, 5 (2006)] for 2D Cartesian grids. The evolution equation for the vector
potential in 3D is only weakly hyperbolic, which makes the direct use of Riemann solvers complicated, since
the system matrix is defective in some directions and due to this, fails to have a full set of linearly independent
eigenvectors in those directions. This requires special numerical treatment, as mentioned in Helzel et al. [J.
Comp. Phys. 227, 9527 (2011)]. To deal with the weakly hyperbolic evolution equation for the magnetic vector
potential, a key step in this work is to use the method of lines approach with a third order non-conservative
finite volume method based on Castro et al. [Math. Comput. 79, 1427 (2010)] for the spatial discretisation.
We couple the evolution of the magnetic potential with the evolution of the MHD equations by using a third
order strong stability preserving Runge-Kutta time stepping method in time. This gives a third order accurate
method for the whole system. We can summarize the properties of the method to be
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(1) third order accurate in space and time on smooth solutions while giving high-resolution on problems with
shocks,

(2) able to solve the weakly hyperbolic evolution equation of the magnetic potential for an CT type update
to control errors in the divergence of the magnetic field,

(3) applicable on both Cartesian and logically rectangular (2D) and hexhedral (3D) mapped grids.

Special artificial resistivity limiters are used to control unphysical oscillations in the magnetic potential and
magnetic field components, computed by the CT, across shocks. Several test computations confirm the desired
properties mentioned above.
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10 Abstracts of contributed lectures — Thursday 11.20–12.50

10.1 Session 46 — Room F — Numerical Methods XV

S46 – Numerical Methods XV – Room F, 11.20–11.50

ENO interpolation is stable:
high resolution, the sign property and entropy stability

Eitan Tadmor
University of Maryland
tadmor@cscamm.umd.edu

ENO is an adaptive procedure to recover piecewise-smooth data with high resolution. The ENO procedure
was introduced in 1987 by Harten et. al. [3] in the context of accurate simulations for piecewise smooth solutions
of nonlinear conservation laws, and since then, it have been used with a considerable success in Computational
Fluid Dynamics; we refer to the review articles of Harten and Shu [4,5] and the references therein. Despite the
extensive literature on the construction and implementation of ENO method and its variants for the last 25
years, we were not aware of any global, mesh independent, stability results. It is in this context that we proved
in [1] the following stability of the ENO procedure: the jump of the ENO pointvalues at each cell interface has
the same sign and in fact, the same size as the jump of the underlying data across that interface.

This sign property, which is shown to hold for ENO interpolation of arbitrary order of accuracy and on
non-uniform meshes, manifests a remarkable rigidity of the piecewise-polynomial ENO procedure. Similar
sign properties hold for the ENO reconstruction procedure from cell averages, which is used, in [2], for the
construction of a new class of arbitrarily high-order, entropy stable — so-called TeCNO schemes, for nonlinear
conservation laws.
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S46 – Numerical Methods XV – Room F, 11.50–12.20

Central-Upwind Schemes for the System of Shallow Water Equations with
Horizontal Temperature Gradients

Alina Chertock
North Carolina State University

chertock@math.ncsu.edu

We consider a modification of the Saint-Venant system of shallow water equations, in which the water temper-
ature fluctuations are taken into account. In two space dimensions the system takes the form:






ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

g

2
h2θ

)

x
+ (huv)y = −ghθBx,

(hv)t + (huv)x +
(
hv2 +

g

2
h2θ

)

y
= −ghθBy,

(hθ)t + (uhθ)x + (vhθ)y = 0,

(1)

where h(x, y, t) denotes the water depth, u(x, y, t) and v(x, y, t) denote the fluid velocity in x- and y-direction
respectively, B(x, y) represents the bottom topography, and g is the gravitational constant. The variable
θ denotes the potential temperature field. Specifically, θ is the reduced gravity ∆Θ/Θref computed as the
potential temperature difference ∆Θ from some reference value Θref .

The studied model was introduced in [3,4,5] for modeling ocean currents and is reffered to as the Ripa system.
System (1) takes into account temperature variations, which effect the pressure term in the Saint-Venant system.
In the Ripa system, the temperature is transported by the fluid, which makes the model substantially more
complicated than the classical Saint-Venant system: If one of the velocity components vanishes, the characteristic
speed becomes zero and the system exhibits a “nonlinear resonance” in the sense that wave speeds from different
families of waves coincide. Moreover, there are no Riemann invariants for this system and therefore it is very
hard to design upwind schemes for the Ripa system, since they are based on (approximate) Riemann problem
solvers.

In general, designing a well-balanced scheme for the Ripa system is a highly nontrivial task since steady
states at rest,

θ ≡ constant, w = h+B ≡ constant, u = v ≡ 0 (2)

and
B ≡ constant, p =

g

2
h2θ ≡ constant, u = v ≡ 0, (3)

which are characterized by zero velocity and the differential (not integrable!) form, no longer correspond to the
flat water surface. In [2], we developed a well-balanced central-upwind scheme for the Ripa system. Our scheme
is capable of exactly preserving these two special types of steady states at rest. To preserve steady states (2),
we have implemented the same technique as for the original Saint-Venant system. However, steady states (3)
are of different nature since they correspond to steady contact waves with constant pressure. They are similar
to the steady-state solutions appearing in compressible multi-fluids. As in the multi-fluid case, a good scheme
must be able to preserve constant pressure and velocity across contact waves to avoid appearance of spurious
pressure and velocity oscillations. To achieve this goal, we have extended the interface tracking method, which
we previously developed for compressible multi-fluids [1], to the Ripa system.
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A positive, entropic, full-well-balanced scheme for the shallow-water model

Christophe Berthon
Laboratoire de Mathématiques Jean Leray
christophe.berthon@univ-nantes.fr

The present work concerns the derivation of an approximate Riemann solver to discretize the well-known shallow-
water model. During the two last decades, numerous methods have been introduced with a special attention on
the preservation of the stationary states given by

hu = cste,
u2

2
+ g(h + Z) = cste,

where h > 0 stand for the water height and u ∈ R the water velocity. The function Z is an imposed smooth
topography. In general the so-called well-balanced schemes are able to restore the lack at rest solution, i.e. the
stationary solution with u = 0. Several attempts were recently proposed to derive schemes able to preserve a
large class of steady states. In [1], a positive entropic scheme which preserves the subsonic stationary states is
given. In [2], a full well-balanced technique is suggested to capture all the stationary states. Unfortunately, this
scheme may involve negative water height.
Here, by involving a suitable approximate Riemann solver (see [3] for related techniques), we obtain a scheme
which is positive, entropy preserving and full-well-balanced since it preserves all the stationary states.
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10.2 Session 47 — Room B — Navier-Stokes and Euler Equations VI

S47 – Navier-Stokes and Euler Equations VI – Room B, 11.20–11.50

Nonlinear stability of a boundary layer solution to the Euler-Poisson equations in
plasma physics

Masashi Ohnawa
Waseda University

ohnawa@aoni.waseda.jp

We study the initial boundary value problem to the Euler-Poisson equations (1) over RN
+ := {(x1, x′) ∈ RN | x1 >

0, x′ ∈ RN−1} for N = 1, 2, 3:

ρt + div(ρu) = 0, (1a)

(ρu)t + div (ρu⊗ u) +K∇ρ+ ρ∇φ = 0, (1b)

−∆φ = ρ− eφ. (1c)

This system of equations describes the isothermal flow of positive ions, where unknown functions ρ, u and φ
stand for the density and the velocity of positive ions and the electrostatic potential. The positive constant K
corresponds to the temperature of ions. The third equations is obtained by assuming the Boltzmann relation:
ρe = eφ. In plasma physics, the Bohm criterion is known as a necessary condition for the formation of a
boundary layer called sheath.

In this presentation, first we define the sheath by a monotone stationary solution to the system of Euler-
Poisson equations (1) over one-dimensional half space and then show that the Bohm criterion together with
the physically natural boundary condition on the electric potential is sufficient for the unique existence of a
monotone stationary solution. We also prove the asymptotic stability of the stationary solution under the
degenerate or nondegenerate Bohm criterion and justifies the Bohm criterion from the mathematical point of
view. Details are seen in [1,2].

We prescribe the initial and the boundary data as

(ρ, u)(0, x) = (ρ0, u0)(x), inf
x∈RN

+

ρ0(x) > 0,

lim
x1→∞

(ρ0, u0)(x1, x
′) = (ρ+, u+, 0, . . . , 0) ∈ RN+1, (2)

φ(t, 0, x′) = φb (3)

for an arbitrary x′ ∈ RN−1, where ρ+ > 0, u+ and φb are constants. The reference point of the value of the
potential φ is taken as x1 = ∞:

lim
x1→∞

φ(t, x1, x
′) = 0 for an arbitrary x′ ∈ RN−1. (4)

It is easily seen that constructing a classical solution to (1c) requires ρ+ = 1.
The planar stationary solution (ρ̃, ũ, 0, . . . , 0, φ̃)(x1) is a solution to (1) independent of the time variable t

or tangential variable x′:

(ρ̃ũ)x1
= 0, (5a)

(
ρ̃ũ2 +Kρ̃

)
x1

+ ρ̃φ̃x1 = 0, (5b)

−φ̃x1x1 = ρ̃− eφ̃. (5c)

Assumptions corresponding to (2)–(4) are also made, that is,

inf
x1∈R+

ρ̃(x1) > 0, lim
x1→∞

(ρ̃, ũ, φ̃)(x1) = (ρ+, u+, 0), φ̃(0) = φb. (6)
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The conditions on the unique existence of the monotone solution to (5) and (6) are obtained in [2]. By those
results, we know that the condition

u2
+ > K + 1, u+ < 0 (7)

together with |φb| < 1 or
u2
+ = K + 1, u+ < 0 (8)

together with φb ≤ 0 and |φb| < 1 is sufficient for the unique existence and the stability of the monotone
stationary solution.

To study the asymptotic stability of the stationary solution, we introduce unknown functions v := log ρ,
ṽ := log ρ̃ and the perturbation

(ψ, η,σ)(t, x1, x
′) := (v, u,φ)(t, x1, x

′)− (ṽ, Ũ , φ̃)(x1),

where Ũ = (ũ, 0, . . . , 0). The equations for (ψ, η,σ) are obtained from (1) and (5) while the initial and the
boundary data are obtained from (2), (3) and (6).
Theorem. (nondegenerate case) For N = 1, 2, 3, let m = [N/2] + 2. Assume K > 0 and (7) hold. Suppose
also (eλx1/2ψ0, eλx1/2η0) ∈ (Hm(RN

+ ))N+1 for a certain positive constant λ. If λ+
(
|φb|+ ‖(eλx1/2ψ0, eλx1/2η0)‖Hm

)
/λ

is small enough, (1)–(3) has a unique solution (ρ, u,φ) such that (eλx1/2ψ, eλx1/2η,
eλx1/2σ) ∈ (X0

m([0,∞)))N+1 × X2
m([0,∞)). Moreover, the solution verifies

‖(eλx1/2ψ, eλx1/2η)(t)‖2m + ‖eλx1/2σ(t)‖2m+2 ≤ C‖(eλx1/2ψ0, e
λx1/2η0)‖2m e−ct.

We also show the algebraic convergence rate in case the initial perturbation decays algebraically. Under the
degenerate condition (8), similar results are obtained with algebraic weight. Readers are referred to [1] for their
proofs.
Notation. For a real number x, [x] denotes a maximum integer which does not exceed x. For a nonnegative
integer l ≥ 0, H l(RN

+ ) denotes the l-th order Sobolev space in the L2 sense, equipped with the norm ‖·‖l = ‖·‖Hl .

The function space Xj
i (i = 0, 1, 2, 3, j = 0, 1, 2) is defined by

Xj
i ([0, T ]) :=

i⋂

k=0

Ck([0, T ];Hj+i−k(RN
+ )).
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In multi-dimensional flow, there are several examples in which there exists a distinguished point around which
the flow is (to first order) constant along rays starting at this point. These include regular reflection (four
shock waves meeting at a point) or Mach reflection (three shocks meeting with a contact or another type of
wave). However, other configurations such as triple points (three shocks with no other waves in between) are
not possible in most reasonable models. Beyond these special cases, the possible combinations of such waves
meeting at a point have not been classified.

From the point of view of an observer moving with this distinguished point, the flow is steady. This leads to
systems of the form

Ut + fx(U)x + fy(U)y = 0,

where U(t, x, y) = U(φ), with φ = #(x, y) ∈ [0, 2π). Here U and the flux functions fx and fy take values in Rm.
The fluxes are assumed to be smooth and possess an entropy-entropy flux pair with uniformly convex entropy
on some open nonempty set in state space. We consider admissible weak solutions that are L∞-close to some
constant supersonic background state U ; that is ||U − U ||L∞ < ε. This background state is supersonic in the
sense that the polynomial

P (x : y) = det
(
xfy

U (U)− yfx
U (U)

)

(where (x : y) are homogeneous coordinates) has exactly m distinct real roots (this is equivalent to requiring
the steady form of the system of conservation laws to be strictly hyperbolic). We carry out all our analysis with
the appropriate weak form, assuming only that U ∈ L∞.

Without loss of generality, we can rotate coordinates so that none of the roots of the above polynomial lie on
the y-axis. Then the solutions to that polynomial correspond to the generalized eigenvalues for the system –
that is, the values of ξ that solve

det
(
fy
U (U)− ξfx

U (U)
)
= 0,

where ξ = y/x. We assume that these eigenvalues are either genuinely nonlinear or linearly degenerate. We
prove, for ε > 0 sufficiently small, that U must be constant outside of 2m thin sectors associated to those
ξ solving the above equation, which we can group as m forward (x > 0) and m backward (x < 0) sectors.
Moreover, we show that linearly degenerate sectors each contain at most one contact discontinuity and that
genuinely nonlinear forward sectors each contain at most one shock or rarefaction wave. However, each gen-
uinely nonlinear backward sector can contain infinitely many shocks and compression waves, but there cannot
be consecutive compression waves.

Interestingly, we also prove that U must have bounded variation. As a corollary, we can interpret the y-axis as
being Riemann data and use our results regarding forward sectors to prove that self-similar solutions to the Rie-
mann problem for strictly hyperbolic 1d-conservation laws (with degenerate or genuinely nonlinear characteristic
fields) are unique in the class of L∞ functions sufficiently close to a specified background state. Although we
cannot have uniqueness in backward sectors, the fact that such L∞ solutions must be BV is interesting because
BV is sharp in the sense that any commonly used function space more restrictive than BV does not contain all
possible Riemann problem solutions.

Finally, we verify that the compressible isentropic Euler equations satisfy all the required conditions for our
results. We give a required entropy-entropy flux pair that is uniformly convex under a standard assumption on
the pressure law. For this system, there are two genuinely nonlinear fields and one degenerate field. We consider
our background state to have horizontal supersonic velocity. The following figure summarizes our results for
this case.
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for δα > 0 so that V is constant outside

⋃m
i=1 I

α. Here δα ↓ 0 as ε ↓ 0. By
forward sector we mean ξ ∈ Iα with x > 0, whereas backward sector refers
to x < 0.

Backward
x < 0

Forward
x > 0

1 contact
1 contact

1 shock
or simple
wave

L∞ ⇒ BV

Several shocks/
simple waves

No consecutive
simple waves

v > c

Figure 1: V must be constant outside narrow sectors specified by eigenvalues.
Linearly degenerate sectors: at most one contact discontinuity. Genuinely
nonlinear forward sectors: at most one shock or simple wave. Genuinely non-
linear backward sectors: infinitely many waves possible, but no consecutive
simple waves, and L∞ solutions must be BV.

13 Genuine nonlinearity

Definition 1. We say Iα is genuinely nonlinear if

∀V ∈ Pε : λ
α
V (V )rα(V ) > 0. (33)

(if < 0 we flip the sign of rα(V ), r̂α(V ±) (which remain unit-length) and
lα(V ), l̂α(V ±)). We say Iα is linearly degenerate if

∀V ∈ Pε : λ
α
V (V )rα(V ) = 0. (34)

14
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A dispersive property of the Euler-Korteweg model
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The Euler-Korteweg system consists in a quasi-linear dispersive perturbation of the Euler equations by the
so-called Korteweg tensor which is intended to take into account capillary effects. The system reads

{
∂tρ+ div(ρu) = 0,
∂tu+ (u ·∇)u+∇g0(ρ) = ∇ (K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2) , (EK)

The Cauchy problem has been studied in any dimension d ≥ 1 by Benzoni-Danchin-Descombes [1], who obtained
local well-posedness results when the velocity is in Hs(Rd) for s > d/2+1. They noticed that one may expect to
find some smoothing effect due to the dispersion (more precisely the local gain of 1/2 derivative). Our aim here
is to give such results in any dimension under their local existence assumptions. Though dispersive smoothing
is well known for the -possibly quasi-linear- Schrödinger [3] or Korteweg de Vries equation [4], (EK) exhibits
several singular features. Besides technical difficulties arising from its quasi-linear nature, special attention is
devoted to two points

• Not all Cauchy data produce a solution satisfying dispersive estimates. Namely we will describe why the
irrotionality of u(t = 0) is essential,
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• The system admits traveling waves solutions [2] whose profile do not satisfy the decay assumptions usually
required in dispersive smoothing results. We give a sufficient condition ensuring that smoothing occurs
for solutions of (EK) linearized near a traveling profile.

The main technics involved are the construction of a symbol in Doi’s spirit [5] that leads formally to dispersive
estimates, and the use of para-differential calculus to tackle the non-linearities.
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We consider semi-discrete monotone finite difference schemes for the nonlinear, possibly strongly degenerate
convection-diffusion equation

{
∂tu+ ∂xf(u) = ∂2

xA(u), (x, t) ∈ ΠT = R× (0, T ),

u(x, 0) = u0(x), x ∈ R.
(1)

Using a doubling of variables type of argument we show that the L1
loc difference between the approximate

solution and the unique entropy solution converges at a rate O(∆x1/3) where ∆x is the spatial mesh size. We
also consider the adaptation of the proof to the multidimensional case.
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In this talk, we consider a new class of Implicit-Explicit (IMEX) Runge-Kutta schemes for the linear semicon-
ductor Boltzmann equation that works in both the kinetic and diffusive regimes. In the latter case, the system
is governed by a parabolic convection-diffusion equation. For such problems, it is suitable to use a method that
is able to capture the asymptotic behavior of the equation with an implicit treatment of the limiting diffusive
term. To this aim, we reformulate the problem by properly combining the limiting diffusion term with the
convective flux, in order to compute the correct limit. Then we discretize the resulting system using high order
IMEX Runge-Kutta schemes. Our approach originates in the zero relaxation limit an IMEX method for the
corresponding convection-diffusion system where, as desired, the diffusion term is discretized implicitly.
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A new method is presented for the solution of compressible Euler equations in time dependent domains. The
computational domain Ω(t) ⊆ R is identified by a region in which a time dependent level-set function φ(x, t) is
negative. The rectangular region R in which the Ω(t) is immersed is discretized by a regular square grid. In all
our talk we assume that Ω is the region in R external to a moving obstacle D(t).

Two sets of nodes are identified in R at each time t: internal nodes x ∈ Ω(t), and ghost nodes, i.e. nodes in
R, which are external to Ω, but are close to the boundary (i.e. within one or few grid points from an internal
node). For fixed domains, i.e. if Ω does not depend on time, the sets of internal and ghost points do not
change, otherwise it has to be updated at every time step. Conservative finite difference will be used as space
discretization. In one time step, from tn to tn+1, the evolution of the system is performed as follows: for points
that will be internal at time tn+1 the field variables are evolved by integrating the semidiscrete system in time,
while the values of all the ghost points which are required to close the system of equations are computed by
making use of boundary conditions.

During the talk, particular care will be given to the imposition of boundary conditions. For Euler equation,
each node contains four quantities in two space dimensions, say density, pressure and two velocities, therefore
four equations are needed for each ghost point. Of course, because of the hyperbolic nature of the problem, the
conditions cannot be applied independently, and have to be compatible with the equations.

We assume that the boundary conditions on the obstacle D(t) are the classical no slip conditions of inviscid
Euler equation on a wall, so one boundary condition states that the normal velocity of the gas on ∂D is equal to
the normal velocity in the points of ∂D. The second condition is obtained balancing centrifugal force on the gas
with pressure gradient. The third condition is obtained from adiabaticity, and relates variations in pressure and
density, and the last condition, imposed on the transversal velocity, is a condition on the enthalpy, commonly
adopted in gas dynamics.

Because the conditions on one ghost point are related to the conditions on neighbor ghost points, they are
not independent, rather they constitute a system that has to be solved quickly in order to proceed with the
integration of the equations on internal points. High order extrapolation will be able to define the equations
for the ghost points to high order accuracy in space.

A recently developed relaxation procedure, successfully applied in the numerical solution of elliptic problems,
is applied to the solution of the system of equations to compute the field at ghost nodes.

Several examples are performed, which illustrate the flexibility and robustness of the methods.
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We consider the initial-boundary value problem on the half line for damped wave equations with a nonlinear
convection term:






utt − uxx + ut + f(u)x = 0, x > 0, t > 0,

u(0, t) = u−, t > 0,

lim
x→∞

u(x, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x > 0,

(1)

where the function f = f(u) is a given smooth function satisfying f(0) = 0 and u− is a given constant with
u− < 0. In this problem, we assume that the initial data u0(x) satisfies u0(0) = u− and limx→∞ u0(x) = 0 as
the compatibility conditions.

We study the asymptotic stability of nonlinear waves for damped wave equations with non-convex convection
term satisfying

0 < |f ′(0)| < 1, 0 = f(0) < f(u), for u ∈ [u−, 0). (2)

We note that the first condition in (2) is so-called sub-characteristic condition. Ueda-Kawashima [2] and
Ueda [1] dealt with the damped wave equation (1) as a derivation of relaxation system and by applying the
Chapman-Enskog expansion to the relaxation system, they suggested that the dissipative structure of (1) is
similar to one of viscous conservation laws. Then Ueda [1] and Ueda-Nakamura-Kawashima [3] actually showed
that the solution of (1) tends toward the stationary solution φ, provided that the initial perturbation is suitably
small. Here, the stationary solution φ = φ(x) is defined by the solution of the stationary problem corresponding
to (1):

{
f(φ) = φx, x > 0,

φ(0) = u−, lim
x→∞

φ(x) = 0.
(3)

In this talk, we prove that even for a quite wide class of the convection term, such a stationary solution is
asymptotically stable. To investigate the stability of the stationary wave φ, we assume that u0 − φ and u1 are
integrable. Then we can define the following functions:

z0(x) = −
∫ ∞

x
(u0(y)− φ(y)) dy ∈ L2, z1(x) = −

∫ ∞

x
u1(y) dy ∈ L2.

By using these functions, we obtain the stability results as follows.

Theorem 1. Let φ(x) be the stationary solution satisfying the problem (3). Assume that z0 ∈ H2 and z1 ∈ H1.
Then there is a positive constant ε0 such that if ‖z0‖H2 +‖z1‖H1 ≤ ε0, then the initial-boundary value problem
(1) has a unique global solution u(x, t) satisfying u − φ ∈ C0([0,∞);H1) ∩ C1([0,∞);L2) and the asymptotic
behavior:

lim
t→∞

sup
x>0

|u(x, t)− φ(x)| = 0. (4)
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Theorem 2. Let φ(x) be the stationary solution satisfying the problem (3). (i) Assume that z0 ∈ H2
α and

z1 ∈ H1
α for α > 0. Let u(x, t) be the global solution to the problem (1), which is constructed in Theorem 1.

Then it holds that

‖u(t)− φ‖H1 ≤ CEα(1 + t)−α/2,

for t ≥ 0, where C is a positive constant and Eα = ‖z0‖H2
α
+ ‖z1‖H1

α
.

(ii) Assume that z0 ∈ H2
α,exp and z1 ∈ H1

α,exp for α > 0. Let u(x, t) be the global solution to the problem (1),
which is constructed in Theorem 1. Then it holds that

‖u(t)− φ‖H1 ≤ CEα,exp e
−βt,

for t ≥ 0, where β is a positive constant depending on α, C is a positive constant and Eα,exp = ‖z0‖H2
α,exp

+
‖z1‖H1

α,exp
.

Notation. For α > 0, L2
α = L2

α(R+) and L2
α,exp = L2

α,exp(R+) denotes the polynomially and exponentially
weighted L2 space with the norm defined by

‖u‖L2
α
=

(∫ ∞

0
(1 + x)α|u(x)|2dx

)1/2
, ‖u‖L2

α,exp
=

(∫ ∞

0
eαx|u(x)|2dx

)1/2
,

respectively.
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Wave-wave interactions of a gasdynamic type
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For a quasilinear system of a gasdynamic type [ex. Euler isentropic/anisentropic; possibly multidimensional] we
constructively consider, in presence of certain integrability restrictions, some highly nontrivial and significant
classes of solutions.

Two analytic approaches are considered: a Burnat type approach [structured by a duality connection be-
tween the hodograph character and the physical character], essentially restricted here to a genuinely nonlinear
version; and a Martin type approach [associated with a Monge−Ampère type representation], which shows un-
conditionally a genuinely nonlinear character. • Each of these two approaches results in two significant classes
of solutions.
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In the isentropic case a genuinely nonlinear Burnat type approach constructively structure: • some [possibly
multidimensional] simple waves solutions − here called waves [a first significant class], and • some [possibly
multidimensional] wave-wave regular interaction solutions [a second significant class].

The present paper includes two selfsimilar isentropic exemples − significant and highly nontrivial − of two-
dimensional wave-wave regular interaction solutions. • The two examples are concurrently associated to some
cases of a quantifiable “amount” of genuine nonlinearity. • The isentropic types of wave-wave regular interactions
constructed appear to parallel, from an analytic, local and regular prospect, some details [interactions of simple
waves solutions] of the Zhang and Zheng two-dimensional qualitative, global and irregular construction. •
The two examples mentioned above suggest that a regular character of the wave-wave interaction described
essentially reflects facts of a multidimensional and skew construction.

In the anisentropic case − and in two independent variables − a Martin type approach is associated with
a particular gasdynamic example, to constructively structure an anisentropic analogue of the isentropic pair of
classes mentioned above: the anisentropic pair which puts together • some pseudo simple waves solutions [as a
first significant class] and • some pseudo wave-wave regular interaction solutions [as a second significant class].
Details concerning the nature of the mentioned analogous character are also presented.

A classifying parallel is concurrently presented between the two analogous pairs of classes [isentropic, anisen-
tropic] − making evidence of some consonances and, respectively, of some nontrivial contrasts of the two men-
tioned constructions [genuinely nonlinear Burnat type, Martin type].

The regular passage [which uses the two analogous pairs of classes] from an isentropic description to an
anisentropic description appears to be fragile. Some essential details of this fragility are presented.
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On cavitation in elastodynamics

Jan Giesselmann
ACMAC, University of Crete

jan.giesselmann@acmac.uoc.gr

In this contribution we study the equations of elastodynamics

ytt = div(σ(∇y)), (1)

with unknown deformation y : B1(0) × [0, T ) → Rd for some T > 0, d ∈ N, B1(0) := {x ∈ Rd : ‖x‖ < 1} and
given stress response σ : Rd×d

+ → Rd×d, where Rd×d
+ := {M ∈ Rd×d : detM > 0}. The system given by (1) is

equivalent to the system of conservation laws

ut −∇v = 0

vt − div(σ(u)) = 0,
(2)
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where u = ∇y is the strain and v = yt is the velocity. In particular, we are interested in radially symmetric
solutions having the form

y(x, t) = tϕ
(

‖x‖
t

)
x

‖x‖ (3)

for some ϕ : [0,∞) → [0,∞), to the initial boundary value problem

y(x, 0) = λx, yt(x, 0) = 0 ∀x ∈ B1(0),

y(x, t) = λx ∀x ∈ ∂B1(0) and 0 ≤ t < T

for some λ > 0. Such problems were investigated in [1] in the static and in [2] in the dynamic case. In those
works solutions containing a cavity at the origin, i.e. ϕ(0) > 0, are constructed.

For d = 1 a solution of (1) which has a cavity corresponds to a solution of (2) where u is a L1–function
plus a δ–distribution. We give a meaning to σ(u) for convex σ (for d = 1), using sequences of functions which

approximate u. We will see that there can only be a solution with cavity in case limu→∞
σ(u)
u = 0.

For d = 3 we define energies of solutions containing cavities in a way which takes into account the contribution
of the cavity, i.e. a region of infinite strain. This differs from the definition of energy in [1,2]. For this new
definition of energy we show that the solution with a cavity has a higher energy at every time than the trivial
solution y(x, t) = λx.
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The Riemann problem for a full-wave Maxwell model modeling electromagnetic
propagation in a nonlinear Kerr medium

Denise Aregba-Driollet
Univ. Bordeaux, IMB

aregba@math.u-bordeaux1.fr

In some contexts optical beams propagating in a nonlinear Kerr medium can be modelled by Maxwell’s equations
with the constitutive relations {

B = µ0H
D = ε0E + P

where P is the nonlinear polarization:
P = PK = ε0εr|E|2E.

µ0, ε0 are the free space permeability and permittivity, εr is the relative permittivity. Choosing as unknowns
the electric displacement D and the magnetic field H this model reads as a 6× 6 three-dimensionnal nonlinear
system of conservation laws: {

∂tD − curlH = 0,
∂tH + µ−1

0 curl(P(D)) = 0
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where P is the reciprocal function of D:

D(E) = ε0(1 + εr|E|2)E.

This system is called Kerr system in the following. It is endowed with a strictly convex entropy, namely the
energy density, so that it is hyperbolic symmetrizable. It is supplemented with the divergence free conditions
on D and H.

For smooth solutions with small data, global existence is proved in [4]. As far as one is concerned with weak
solutions, there is no general existence result. As a first step into the comprehension of such solutions, Kerr
shocks and related relaxation Kerr-Debye shock profiles have been studied in [1], the Kerr-Debye system being
obtained by approximating the instantaneous polarization P by a model with a finite response time.

Solving the Riemann problem enlightens the theoritical properties of weak solutions as well as it is an
essential tool for the design of numerical schemes. For Kerr system, partial results on this problem can be found
in [3]. In the present work we solve the Riemann problem for the 6 × 6 full wave system. For each direction
ω ∈ R3, the Kerr system owns six eigenvalues with variable multiplicity. The characteristic fields 1, 3, 4, 6 are
linearly degenerate, and the others are neither linearly degenerate nor genuinely nonlinear. More precisely let
us denote u = (D,H), λi(ω, u) the ith eigenvalue and ri(ω, u) the related eigenvector.

λ1(ω, u) = λ2(ω, u) and λ5(ω, u) = λ6(ω, u) if and only if D × ω = 0,

and for i ∈ {2, 5}:

λ′
i(ω, u) · ri(ω, u) 3= 0 if and only if D × ω 3= 0.

For all Riemann data, we construct a Lax entropy solution as a combination of simple waves: 1-contact dis-
continuity, 2-shock or rarefaction, 3-4-contact discontinuity, 5-shock or rarefaction, 6-contact discontinuity. We
prove that entropy solutions structured like this are unique. When the solution contains shocks, those shocks
are admissible in the sense of Liu [5] and in the sense of Lax, and they satisfy an energy inequality.

Generally speaking, the 1 and 6 contact discontinuities are rotating modes which put the intermediate electric
displacements and ω in a same plane where shocks and rarefactions occur. Special physical configurations such
as TE or TM propagation give rise to reduced 3 × 3 or even 2 × 2 models. We point out the fact that even if
a rotating contact discontinuity of the full wave system may be a weak solution of a reduced model, it is not
an admissible solution for it. The entropy solution of the reduced model differs from the one of the full wave
model, and this induces numerical problems like the ones observed in [3].

References

[1] D. Aregba-Driollet and B. Hanouzet, Kerr-Debye relaxation shock profiles for Kerr equations, Commun.
Math. Sci., 9 (2011), pp. 1-31.

[2] G. Carbou and B. Hanouzet, Relaxation approximation of Kerr Model for the three dimensional initial-
boundary value problem, J. Hyperbolic Differ. Equ., 6 (2009), pp. 577-614.

[3] A. de La Bourdonnaye, High-order scheme for a nonlinear Maxwell system modelling Kerr effect, J.
Comput. Phys., 160 (2000), pp. 500–521.

[4] M. Kanso, PhD thesis, 2012.

[5] T.-P. Liu, The entropy condition and the admissibility of shocks, J. Math. Anal. Appl., 53 (1976), pp.
78–88.

[6] R.-W. Ziolkowski, The incorporation of microscopic material models into FDTD approach for ultrafast
optical pulses simulations, IEEE Transactions on Antennas and Propagation, 45 (1997), pp. 375-391.

∗ ∗ ∗

Session 50 — Room E — Electro-Magnetic Flows & High Frequency Phenomena



176 14th Int’l Conference on Hyperbolic Problems: Theory, Numerics, Applications

S50 – Electro-Magnetic Flows & High Frequency Phenomena – Room E, 11.50–12.20

High-frequency limit of the Maxwell-Landau-Lifshitz system in the diffractive
optics regime

Yong Lu
Université Paris-Diderot (Paris 7), Institut de Mathématiques de Jussieu, UMR CNRS 7586

luyong@math.jussieu.fr

We study semilinear Maxwell-Landau-Lifshitz systems in one space dimension of the form:

∂tv +A(e1)∂yv +
L0v

ε
= B(v, v), (1)

where the unknown v ∈ R9, the space variable is y ∈ R1. The symmetric matrix A(e1) and skew-symmetric
matrix L0 are defined as

A(e1) =




0 −e1× 0

e1× 0 0
0 0 0



 , L0 =




0 0 0
0 −e1× e1×
0 e1× −e1×



 , (2)

where the vector e1 = (1, 0, 0) ∈ R3. We consider highly oscillatory initial data of the form

v(0, y) = a(y)eiky/ε + a(y)e−iky/ε + εa1(y, ky/ε) + ε2a2(y, ky/ε), (3)

where a1(y, θ) and a2(y, θ) are real-valued and 2π-periodic in θ.

We first construct WKB approximate solutions va over long times O(1/ε). The leading terms of the WKB
solutions solve cubic Schrödinger equations. Then we show that the Schrödinger approximation stays close to
the exact solution of Maxwell-Landau-Lifshitz over its existence time O(1/ε) with an error estimate that is
comparable to the initial error. Precisely, for prepared and regular initial data (3), we obtain the following
result

sup
t∈[0,T/ε]

‖(v − va)(t)‖L∞(R1
y)

≤ C‖(v − va)(0)‖L∞(R1
y)

≤ Cε,

where T > 0 independent of ε, v and va are respectively the exact solution and the approximate solution. In
the context of Maxwell-Landau-Lifshitz, this extends the analysis of Colin and Lannes [2] from times O(| ln ε|)
up to O(1/ε).
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Mather measures in semiclassical analysis

Lorenzo Zanelli
Università di Bologna

lorenzo.zanelli@unibo.it

We discuss the Mather’s minimization problem, i.e. to find measures which are Action minimizing and invariant
under the Lagrangian flow, in the framework of semiclassical analysis. We show that the Legendre transform
of a relevant class of Mather measures is the semiclassical limit of the Wigner transform of energy quasimodes.
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10.6 Session 51 — Room D — Traffic Flow and Population Dynamics

S51 – Traffic Flow and Population Dynamics – Room D, 11.20–11.50

Scalar conservation laws with moving density constraints arising in traffic flow
modeling
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The aim of this work is to study the well-posedness of a PDE-ODE coupled model with application to traffic
flow.

We refer to a model proposed in [2]: a slow moving large vehicle along a road reduces its capacity and thus
generates a moving bottleneck for the cars flow. From the macroscopic point of view this can be modeled by a
PDE-ODE coupled model consisting in a scalar conservation law with moving density constraint and an ODE
describing the slower vehicle motion, i.e.,






∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ αR, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.

(1)

Above, ρ = ρ(t, x) ∈ [0, R] is the scalar conserved quantity representing the mean traffic density, R is the
maximal density allowed on the road and the flux function f : [0, R] → R+ is a strictly concave function such
that f(0) = f(R) = 0. It is given by the formula

f(ρ) = ρv(ρ),

where v is a smooth decreasing function denoting the mean traffic speed and here set to be v(ρ) = V (1− ρ/R),
V being the maximal velocity allowed on the road.
The time-dependent variable y denotes the bus position, that moves with a traffic density dependent speed of
the form

ω(ρ) =

{
Vb if ρ ≤ ρ∗

.
= R(1− Vb/V ),

v(ρ) otherwise,
(2)

that is, the slow vehicle moves with constant speed Vb < V as long as it is not slowed down by downstream
traffic conditions. When this happens, it moves with the mean traffic speed.
Finally, the constant coefficient α ∈ ]0, 1[ gives the reduction rate of the road capacity due to the presence of
the bus.

The above model can be viewed as a generalization to moving constraints of the problem consisting in a
scalar conservation law with a (fixed in space) constraint on the flux, introduced in [1]. Here, the constraint
location moves due to the surrounding traffic conditions, which in turn is modified by the presence of the slower
vehicle, thus resulting in a strong non-trivial coupling. Compared to the model recently proposed by [3], problem
(1)-(2) offers a more realistic definition of the bus velocity and a description of its impact on traffic flow which
is simpler to handle both from the analytical and the numerical point of view.
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On the Management of Vehicular Traffic

Massimiliano Daniele Rosini
ICM, Warsaw University
mrosini@icm.edu.pl

Several realistic situations in vehicular traffic that give rise to queues can be modeled through conservation laws
with initial–boundary data and unilateral constraints on the flux. We provide a rigorous analytical framework
for these descriptions, comprising stability with respect to the initial data, to the boundary inflow and to the
constraint. We present a framework to rigorously state optimal management problems and prove the existence of
the corresponding optimal controls. Specific cases are dealt with in detail through ad hoc numerical integrations.
These are here obtained implementing the wave front tracking algorithm, which appears to be very precise in
computing, for instance, the exit times.

References

[1] D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlin-
ear Differential Equations Appl., 4 (1997), pp. 1-42

[2] D. Amadori and R. M. Colombo, Continuous dependence for 2 × 2 conservation laws with boundary, J.
Differential Equations, 138 (1997), pp. 229-266

[3] F. Ancona and A. Marson, Scalar non-linear conservation laws with integrable boundary data, Nonlinear
Anal., 35 (1999), pp. 687-710

[4] B. Andreianov, P. Goatin, and N. Seguin, Finite volume schemes for locally constrained conservation laws,
Numer. Math., 115 (2010), pp. 609-645
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An adaptive finite-volume method
for a model of two-phase pedestrian flow

Stefan Berres
Universidad Católica de Temuco

sberres@uct.cl

A flow composed of two populations of pedestrians moving in different directions is modeled by a two-dimensional
system of convection-diffusion equations. An efficient simulation of the two-dimensional model is obtained by
a finite-volume scheme combined with a fully adaptive multiresolution strategy. Numerical tests show the flow
behavior in various settings of initial and boundary conditions, where different species move in countercurrent
or perpendicular directions. The equations are characterized as hyperbolic-elliptic degenerate, with an elliptic
region in the phase space, which in one space dimension is known to produce oscillation waves. When the initial
data are chosen inside the elliptic region, a spatial segregation of the populations leads to pattern formation.
The entries of the diffusion-matrix determine the stability of the model and the shape of the patterns.

References

[1] S. Berres, R. Bürger and A. Kozakevicius, Numerical approximation of oscillatory solutions of hyperbolic-
elliptic systems of conservation laws by multiresolution schemes, Adv. Appl. Math. Mech., 1 (2009),
581–614.

[2] S. Berres, R. Ruiz-Baier, H. Schwandt, E.M. Tory, An adaptive finite-volume method for a two-phase
model of pedestrian flow, Networks and Heterogeneous Media, 6 (2011), 401–423.

[3] J.H. Bick, G.F. Newell, A Continuum Model for Two-Directional Traffic Flow, Quart. Appl. Math., 18
(1960), 191–204.

[4] H. Frid, I-S. Liu, Oscillation waves in Riemann problems inside elliptic regions for conservation laws of
mixed type, Z. Angew. Math. Phys., 46 (1995), 913–931.

Joint work with: Ricardo Ruiz-Baier (Ecole Polytechnique Fédérale de Lausanne), Hartmut Schwandt (Technische Uni-

versität Berlin), Elmer M. Tory (Mount Allison University).

10.7 Session 52 — Room C — Theory of Conservation Laws VI

S52 – Theory of Conservation Laws VI – Room C, 11.20–11.50

Generalizing the Bardos-LeRoux-Nédélec boundary condition for scalar
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In the study of boundary-value problems for scalar conservation laws, the Bardos, LeRoux and Nédélec paper
[1] is the crucial reference. In [1], the interpretation of the Dirichlet boundary condition for problem

∂tu+ divϕ(u) = 0 in Ω ⊂ RN , u(0, ·) = u0

was established. Indeed, if the Dirichlet boundary condition is imposed at the level of the viscosity approxi-
mation, the approximate solutions may develop a boundary layer, so that the limit solution verifies a different
boundary condition. The BV assumption on the data, used in [1] for existence of boundary traces of u, has now
been dropped thanks to “strong trace” regularity results of Vasseur [4] and Panov [5]. The zero-flux bound-
ary condition, at least as important in practice as the Dirichlet one, has received much less attention in the
literature. Bürger, Frid and Karlsen in [3] treat the important case of a compactly supported ϕ: under this
assumption, there is no boundary layer.

Our interest goes to the zero-flux condition beyond the setting of [3], as well as to the Robin, obstacle, mixed
boundary conditions. All these examples are particular cases of general “dissipative” boundary conditions for
conservation laws, i.e., the conditions that are compatible with the L1-dissipative structure of the conservation
law. In general, they are stated under the form ϕ(u) · ν(x) ∈ β(t,x)(u), where ν(x) is the exterior unit normal
at a point x ∈ ∂Ω, and β := (β(t,x))t∈(0,T ),x∈∂Ω is a measurable family of maximal monotone graphs.

Our interpretation of the boundary condition involves a projection β̃(t,x) of β(t,x) which is the closest to β(t,x)

maximal monotone subgraph of ϕ(.) · ν(x) that contains all the points of crossing between the graphs β(t,x) and
ϕ(.) · ν(x). This can be seen as a generalization of the Dubois and LeFloch’s [2] graphical interpretation of the
Bardos-LeRoux-Nédélec condition. The first results that we presented in [6] and [7] are now extended so that
to yield a full well-posedness theory. This includes several equivalent definitions of entropy solutions for conser-
vation laws with dissipative boundary condition; the associated uniqueness and comparison theorems; results of
convergence of vanishing viscosity approximation; and different stability results with respect to perturbations
of β.
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Sci. Paris, Ser. I, 345 (2007), pp. 431–434.

Joint work with: Karima Sbihi (Toulouse)
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S52 – Theory of Conservation Laws VI – Room C, 11.50–12.20

Well-posedness of continuity equations with low regularity coefficients defined in
domains with boundary

Laura V. Spinolo
IMATI-CNR, Pavia, Italy
spinolo@imati.cnr.it

The talk will focus on continuity equations with weakly differentiable coefficients. Existence and uniqueness
results for the Cauchy problem have been established for coefficients with Sobolev and BV (bounded total vari-
ation) regularity by DiPerna-Lions [4] and by Ambrosio [1], respectively. These results have been applied to the
analysis of several nonlinear partial differential equations, including multidimensional systems of conservation
laws [2].

During the talk I will discuss existence and uniqueness results for continuity equations with BV coefficients
defined in domains with boundary. Data are assigned at the initial time and on the portions of the boundary
where the coefficients are inward-pointing. Under suitable hypotheses on the orientation of the coefficients at
the boundary, the above-mentioned well-posedness results can be extended to the case when the total variation
is only locally bounded. However, I will exhibit an example showing that, in the general case, uniqueness is
violated when the total variation of the coefficients blows up at the boundary of the domain.
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Joint work with: Gianluca Crippa (Universität Basel, Switzerland), Carlotta Donadello (Université de Franche-Comté,
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S52 – Theory of Conservation Laws VI – Room C, 12.20–12.50

Lower compactness estimates for scalar balance laws

Khai T. Nguyen
Dipartimento di Matematica, Università degli Studi di Padova, Italy

khai@math.unipd.it

Session 52 — Room C — Theory of Conservation Laws VI



184 14th Int’l Conference on Hyperbolic Problems: Theory, Numerics, Applications

We study the compactness in L1
loc of the semigroup (St)t≥0 of entropy weak solutions to strictly convex scalar

conservation laws in one space dimension. The compactness of St for each t > 0 was established by P. D. Lax
[1]. Upper estimates for the Kolmogorov’s ε-entropy of the image through St of bounded sets C in L1 ∩ L∞

which is denoted by
Hε(St(C) | L1(R)) := log2 Nε(St(C)).

where Nε(St(C)) is the minimal number of sets in a cover of St(C) by subsets of L1(R) having diameter no
larger than 2ε, were given by C. De Lellis and F. Golse [3]. Here, we provide lower estimates on this ε-entropy
of the same order as the one established in [3], thus showing that such an ε-entropy is of size ≈ (1/ε). Moreover,
we extend these estimates of compactness to the case of convex balance laws.
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10.8 Session 53 — Room H — BioFluids Models II

S53 – BioFluids Models III – Room H, 11.20–11.50

Fractional Conservation Laws and Keller-Segel Type System in Higher
Dimensions

Suleyman Ulusoy
Zirve University

suleyman.ulusoy@zirve.edu.tr

In this talk, we will introduce our results on Levy mixed hyperbolic-parabolic equations and also on a Keller-
Segel type system in higher dimensions. If time permits we will also talk about the Keller-Segel type system
with a nonlinear, nonlocal diffusion operator.
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Joint work with: Kenneth H. Karlsen (Universty of Oslo), Eric A. Carlen (Rutgers University).
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S53 – BioFluids Models III – Room H, 11.50–12.20

Multi-dimensional Degenerate Keller-Segel system with new diffusion exponent
2n/(n+ 2)

Jinhuan Wang
Department of Mathematics, Liaoning University, Shenyang 110036, P. R. China AND Department of

Mathematical Sciences, Tsinghua University, Beijing, 100084, People’s Republic of China
wangjinhuan@math.tsinghua.edu.cn

Joint work with Li Chen and Jian-Guo Liu

This talk will deal with a degenerate diffusion Patlak-Keller-Segel system in n ≥ 3 dimension with homogeneous
degenerate diffusion:






ρt = ∆ρm − div(ρ∇c), x ∈ Rn, t ≥ 0,

−∆c = ρ, x ∈ Rn, t ≥ 0,
ρ(x, 0) = ρ0(x), x ∈ Rn,

(1)

where diffusion exponent is taken to be m = 2n
n+2 ∈ (1, 2). This model is widely used to describe the collective

motion of cells. Here ρ(x, t) represents the bacteria density and c(x, t) represents the chemical substance
concentration.

The main difference between the current work [1] and many recent works on the same model is that we
study the diffusion exponent m = 2n/(n+ 2) which is smaller than the usually used exponent m∗ = 2− 2/n in
many recent works [2]. With the exponent m = 2n/(n + 2), the associated free energy is conformal invariant.

Moreover, there is a family of stationary solution Uλ,x0(x) = C(n)( λ
λ2+|x−x0|2 )

n+2
2 , ∀λ > 0, x0 ∈ Rn, and the

Lm norm of the stationary solution is fixed constant independ ed of λ and x0.
Our main results: At first, for radially symmetric solutions, we prove that if the initial data is strictly below

Uλ,0(x) for some λ then the solution vanishes in L1
loc as t → ∞; if the initial data is strictly above Uλ,0(x) for

some λ then the solution either blows up at a finite time or has a mass concentration at r = 0 as time goes
to infinity. Next, for general initial data, we prove that there is a global weak solution provided that the Lm

norm of initial density is less than a universal constant, and the weak solution vanishes as time goes to infinity.
Finally, We give a finite time blow up of the solution if the Lm norm for initial data is larger than the Lm norm
of Uλ,x0(x), and the free energy of initial data is smaller than that of Uλ,x0(x).
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S53 – BioFluids Models III – Room H, 12.20–12.50

Numerical techniques for solving nonlinear kinetic rate model of reactive liquid
Chromatography

Shumaila Javeed
Max Planck Institute for Dynamics of Complex Technical Systems,

Sandtorstr. 1, 39106 Magdeburg, Germany,
Institute for Analysis and Numeric, Otto-von-Guericke University, 39106 Magdeburg, Germany

javeed@mpi-magdeburg.mpg.de

Chromatography is a versatile separation techniques widely used for analysis, purification, and for the production
of fine chemicals in pharmaceutical and food industries. The technique is particularly useful for numerous
complex processes, such as the separation of enantiomers and the isolation of proteins. Chromatographic models
are useful for understanding, design and control of the process. The objective of this work is to numerically
analyze the kinetic rate model of reactive liquid chromatography. The model contains coupled system of
convection-diffusion-reaction partial differential equations with dominated convective terms, ordinary differential
equations and algebraic equations. The simulation of multi-component chromatographic processes under non-
linear conditions and reaction kinetics require fast and accurate numerical methods. Shocks discontinuities may
develop in the solution, causing numerical difficulties for the schemes. Thus, an efficient and accurate numerical
method is needed for producing physically realistic solutions. A high resolution semi-discrete flux-limiting finite
volume scheme is proposed for solving this model. The suggested scheme is capable to suppress numerical
oscillations and, thus, preserves the positivity of numerical solutions. Moreover, the scheme has capability to
accurately capture sharp discontinuities of chromatographic fronts on coarse grids. The method is robust and
well suited for large-scale time-dependent simulations of chromatographic processes where accuracy is highly
demanding. Several test problems of reactive chromatographic processes are investigated. The results of the
current method are validated against other available schemes.
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10.9 Session 54 — Room I — Models and Simulations in Mechanics

S54 – Models and Simulations in Mechanics – Room I, 11.20–11.50

Detonation wave problems: modeling, numerical simulations and linear stability

Filipe Carvalho
Centro de Matemática, Universidade do Minho, Braga, Portugal

[filipecarvalho@esce.ipvc.pt]

In this talk, some recent studies arising in the area of the reactive Bolzmann equation for gaseous mixtures
and its hydrodynamical limit will be presented, mainly addressed to the modeling of reactive gas systems and
the propagation and stability of steady detonation waves [1].

Detonation waves are combustion fronts triggered by a strong shock and sustained by a chemical reaction [2].
They can be mathematically modeled by the reactive Euler equations, which express conservation of momentum
and total energy (kinetic and chemical) as well as reaction rate of the constituents. Experimental studies show
that the detonation waves tend to be structurally unstable and a first attempt to understand and describe the
instabilities is a hydrodynamic stability analysis based on the linearization of the governing Euler equations
and a normal-mode representation of the perturbations [2]. It is well known that the numerical analysis of
detonation waves and its hydrodynamic stability is a rich and challenging problem with many engineering
applications [3]. We investigate this problem starting by considering a binary mixture whose particles can
undergo elastic collisions and collisions with chemical reaction of type A + A $ B + B. We assume that
the behavior of the mixture is modeled by a system of Boltzmann equations for the constituent distribution
functions, with both elastic scattering and reactive collision terms. Then we pass to the hydrodynamic limit for
an Eulerian regime and use the resulting macroscopic reactive equations to study the detonation wave problem
and its hydrodynamic stability. The numerical technique is described and some representative computational
results are presented and discussed.
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S54 – Models and Simulations in Mechanics – Room I, 11.50–12.20

Exact solutions to the Riemann problem for compressible isothermal Euler
equations for two phase flows with and without phase transition

Maren Hantke
Otto-von-Guericke University Magdeburg

maren.hantke@ovgu.de
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We consider the isothermal Euler equations with phase transition between a liquid and a vapor phase. The mass
transfer is modeled by a kinetic relation. We prove existence and uniqueness results. Further, we construct
the exact solution for Riemann problems. We derive analogous results for the cases of initially one phase with
resulting condensation by compression or evaporation by expansion. Further we present numerical results for
these cases. We compare the results to similar problems without phase transition.
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S54 – Models and Simulations in Mechanics – Room I, 12.20–12.50

Modeling, simulation and optimisation of gas flow in an exhaust pipe

Martin Rybicki
Universität Hamburg

martin.rybicki@math.uni-hamburg.de

We study the gas flow in an exhaust pipe. In particular we focus on the requirement of heating up the catalytic
converter.

Starting from one-dimensional hyperbolic balance laws for a pipe with variable cross section, we will derive
by using a small Mach number limit an asymp totic model consisting of coupled ODEs and PDEs. For the
description of the full exhaust pipe we use a network Ansatz connecting verious pipes with (different) constant
cross section. This model still describes the main features and is computationally a few orders of magnitude
faster the the original model.

Furthermore we will present a related optimization problem.

Joint work with: Prof. Dr. Ingenuin Gasser (Universität Hamburg)
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11 Abstracts of contributed lectures — Thursday 14.55–15.55

11.1 Session 56 — Room A — Nonlinear Waves I

S56 – Nonlinear Waves I – Room A, 14.55–15.25

An efficient splitting technique for two–layer Shallow–Water model

Françoise Foucher
Laboratoire de Mathématiques Jean Leray

University of Nantes, 2 rue de la Houssinière, 44300 Nantes, France

We consider the numerical system of the shallow-water equations for the one-dimensional flow of two superposed
layers of immiscible fluids with different constant densities, over a bottom with non flat topography. We propose
to extend a recent technique, introduced in [1], to approximate the solutions of the model under consideration.
The benefits of this approach are twofold. In one hand, the resulting scheme turns out to be very easy to be
implemented. Indeed, we obtain a relevant way to couple two Saint-Venant models associated with each layer.
Despite the work by Bouchut-Morales [2] where splitting tentativeness are shown to fail, we here obtain fairly
good approximations even if very severe regimes are considered. In the second hand, the scheme is proved to
be well-balance preserving and layer height positive preserving. Several numerical experiments are performed
and give improved results. For instance, considering lock-exchanged layers, the suggested method produces
expected approximations while standard or sophisticated splitting approaches failed (see [2]).
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S56 – Nonlinear Waves I – Room A, 15.25–15.55

Stability of solitary waves in generalized Korteweg-de Vries and Euler-Korteweg
/ Boussinesq equations

Johannes Höwing
University of Konstanz

Johanneshoewing@gmail.com

We show that solitary waves for the generalized Korteweg-de Vries equation and for the generalized Boussinesq
equation (the p-system endowed with capillarity) are stable if the flux function p satisfies

p′′ > 0 and p′′′ ≤ 0.
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While p′′ > 0 alone suffices for the stability of waves of sufficiently small amplitude, obvious examples show
that p′′′ ≤ 0 cannot be omitted in the general case. In particular, the generalized Boussinesq equation with

p(v) = kv−γ with γ ≥ 1, k > 0

describes the flow of an inviscid isothermal ideal (barotropic) fluid with capillarity. In this talk, we present the
following new stability results:
Theorem 1 Consider the generalized Korteweg-de Vries (gKdV) equation with a smooth function p satisfying
p′′ > 0 and p′′′ ≤ 0. Then any solitary wave is stable.
Theorem 2 Consider the generalized Boussinesq equation with p : R → R or p : (0,∞) → R satisfying
p′ < 0, p′′ > 0 and p′′′ ≤ 0. Then any solitary wave is stable.
These results complement the findings of Bona, Souganidis and Strauss [1], and Bona and Sachs [2], respectively;
the only overlap of Theorems 1 and 2 with those consisting exactly of the quadratic nonlinearity p′′′ ≡ 0. Note,
however, that Theorems 1 and 2 are not restricted to pure power laws.
Furthermore, we will extend some of our results to the case of non-constant capillarity in the so-called Euler-
Korteweg equation.
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11.2 Session 57 — Room G — Numerical Methods XVII

S57 – Numerical Methods XVII – Room G, 14.55–15.25

Inflow-Implicit/Outflow-Explicit Finite Volume Methods for Solving Advection
Equations

Karol Mikula
Slovak University of Technology, Faculty of Engineering, Radlinskeho 11, 81368 Bratislava, Slovakia

karol.mikula@stuba.sk

We present new semi-implicit schemes for solving non-stationary advection equations. The basic idea is that
outflow from a cell is treated explicitly while inflow is treated implicitly. This is natural, since we know what is
outflowing from a cell at the old time step but we leave the method to resolve a system of equations determined
by the inflows to a cell to obtain the solution values at the new time step. The matrix of the system in our
inflow-implicit/outflow-explicit (I2OE) method is determined by the inflow fluxes which results in a M-matrix
yielding favourable solvability and stability properties for the scheme. Since the explicit (outflow) part is not
always dominated by the implicit (inflow) part and thus some oscillations can occur, we build a stabilization
based on the upstream weighted averages with coefficients determined by the flux-corrected transport approach
yielding high resolution versions of the basic scheme. We show that on uniform rectangular grids, the I2OE
method is exact for any choice of time step in the case of constant velocity transport of quadratic functions in
any dimension. We also show its formal second order accuracy in space and time for 1D advection problems
with variable velocity and local mass conservativity in case of divergence free velocities. The unconditional L2-
stability for divergence free velocity in 1D on periodic domains and unconditional L∞-stability for the stabilized
high resolution variants of the scheme is proved. Numerical results and comparisons with the well-known explicit
and other implicit schemes are presented and discussed regarding stability and precision of computations in the
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case of time steps several times exceeding the CFL stability condition. The application of the new schemes in
numerical modelling of forest fire front propagation and in image segmentation are also presented.
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S57 – Numerical Methods XVII – Room G, 15.25–15.55

A new multidimensional-type reconstruction and limiting procedure for
unstructured cell-centered finite volumes solving hyperbolic conservation laws

Argiris I. Delis
Department of Sciences, Technical University of Crete, Chania, Greece 73100

adelis@science.tuc.gr

On unstructured meshes the cell-centered finite volume (CCFV) formulation where the control volumes are the
mesh elements themselves is, probably, the most applied approach for numerically solving two-dimensional (2D)
hyperbolic conservation laws. In this work, and within the CCFV framework, second-order spatial accuracy
is achieved with a MUSCL-type linear reconstruction technique where a novel edge-based multidimensional-
type limiting procedure is derived for the control of the total variation of the reconstructed field. To this
end, a relatively simple but very effective modification to the reconstruction procedure for CCFV schemes
is introduced that takes into account geometrical characteristics of computational triangular (but not only)
meshes. The proposed strategy is shown not to suffer from loss of accuracy on grids with poor connectivity and
compares well, or in favor, to solution reconstructions that implement well-known multidimensional limiters.
In addition, our approach can be applied using edge-type limiters thus, avoiding the procedure of solving any
minimization problems. Although the proposed limited reconstruction is independent from the Riemann solver
used, well-known approximate Riemann solvers are utilized to compute the numerical fluxes while the Green-
Gauss (G-G) divergence formulation for gradient computations is implemented. Two different stencils for the
G-G gradient computations are critically tested, in conjunction with the proposed limiting strategy, on various
grid types, for smooth and non-smooth flow conditions. We apply this reconstruction to CCFV solutions on
unstructured triangular meshes for the 2D Euler equations and in the development of a well-balanced scheme
for the simulation of unsteady 2D shallow water flows over arbitrary topography. The proposed strategy is
shown to retain the formal order of accuracy and produce accurate shock/bore computations on different mesh
types, even for distorted and highly stretched ones.
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11.3 Session 59 — Room H — Mechanics and Fluids

S59 – Mechanics and Fluids – Room H, 14.55–15.25

Renormalization and universality of blowup in hydrodynamic flows and
conservation laws

Alexei A. Mailybaev
Instituto Nacional de Matemática Pura e Aplicada – IMPA,

Rio de Janeiro, Brazil
a.mailybaev@gmail.com, alexei@impa.br

We consider self-similar solutions describing intermittent bursts in shell models of turbulence, and study their
relationship with blowup phenomena in continuous hydrodynamic models. First, we show that these solutions
are very close to self-similar solution for the Fourier transformed inviscid Burgers equation corresponding to
shock formation from smooth initial data. Then, the result is generalized to hyperbolic conservation laws in
one space dimension describing compressible flows. It is shown that the renormalized wave profile tends to a
universal function, which is independent both of initial conditions and of a specific form of the conservation law.
This phenomenon can be viewed as a new manifestation of the renormalization group theory. Finally, we discuss
possibilities for application of the developed theory for detecting and describing a blowup in incompressible flows.
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S59 – Mechanics and Fluids – Room H, 15.25–15.55

Long waves on 3D shear flows:
hyperbolicity and discontinuous solutions

Alexander Khe
Lavrentyev Institute of Hydrodynamics

alekhe@hydro.nsc.ru

A long wave approximation of the equation governing three dimensional flows of ideal incompressible fluid is
considered. Theory of the generalized hyperbolicity introduced in [1] is applied to the integrodifferential system
obtained.

The system in question cannot be written in the form of conservation laws. A special rearrangement is
applied to the equations in order to consider discontinuous solutions. It is shown that the assumption made is
consistent with the properties of the discontinuous solutions of the original Euler equations. Relations at the
discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of
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determining the flow parameters behind the discontinuity front from known parameters before the front and
specified velocity of motion of the front are investigated.

It is shown that the flow parameters behind the jump are defined by a certain curve which is an analog of
the (ϑ, p) diagram in gas dynamics. A shock polar and examples of flows with a hydraulic jump are constructed
for a particular class of solutions.

A numerical method for integrodifferential systems introduced in [2] is developed and applied to the case of
3D equations. Some illustrative solutions are presented for smooth and discontinuous flows.
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11.4 Session 60 — Room C — Wave Patterns Analysis I

S60 – Wave Patterns Analysis I – Room C, 14.55–15.25

The Stefan problem and the vanishing surface tension limit

Mahir Hadžić
Massachusetts Institute of Technology

hadzic@math.mit.edu

We develop a new unified framework for the treatment of well-posedness for the Stefan problem with and without
surface tension. This is a well-known model describing solid-liquid phase transitions. Our approach yields new
estimates for the regularity of the moving surface in the absence of surface tension, which allows us to prove
that solutions of the Stefan problem with positive surface tension converge to solutions of the Stefan problem
without surface tension. Our techniques rely on a fluid-mechanics inspired approach which, in a suitable sense,
combines the Eulerian and the Lagrangian viewpoint.

Joint work with: Steve Shkoller (University of California Davis)

∗ ∗ ∗

S60 – Wave Patterns Analysis I – Room C, 15.25–15.55

On the stability of degenerate viscous shock profiles

Ramón G. Plaza
IIMAS-UNAM

plaza@mym.iimas.unam.mx
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Sonic shock waves travel with speed equal to one of the characteristic speeds of the medium, making the
stability problem degenerate from the dynamical systems viewpoint. In this talk, I show how to obtain sharp Lp-
decay rates for perturbations of scalar sonic shocks using energy methods [4]. The analysis involves interpolation
inequalities, the Matsumura-Nishihara weight function [3] and energy estimates. The analysis can be applied
to shocks of all orders of degeneracy and provides sharp rates of decay. The method is independent from the
pointwise Green’s function method [1, 2]. In addition, I show how to extend the analysis to the system case to
obtain stability results in L2 [5].
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Continuous solutions to a balance law

Laura Caravenna
OxPDE, University of Oxford

laura.caravenna@maths.ox.ac.uk

When interpreting in the sense of distribution a scalar, 1D-balance law

ut(t, x) + f(u(t, x))x = g(t, x), (t, x) ∈ R+ × R,

the source term g is naturally defined only up to L2-negligible sets. When u is continuous, characteristics are
not unique but however classically defined. Notwithstanding that, without continuity assumptions on g it is
not a priori clear how to see the PDE as a growth condition of u along characteristics, because in the equation

γ̇(t) = f ′(u(t, γ(t)))
d

dt
u(t, γ(t)) = g(t, γ(t))

the pointwise values of g on curves are involved.
When f(u) = u2/2, under the assumption that u is continuous and g is bounded, we have proved that u is

Lipschitz along characteristics; this extends the case considered by C. Dafermos where g was also continuous in
x at each fixed time. Beside that, we show the remarkable fact that there exists a Borel pointwise representative
ĝ of g which is the derivative of u along any absolutely continuous characteristic line. This regularity is part
of the characterization of intrinsic Lipschitz graphs in the Heisenberg group (joint work with F. Bigolin and
F. Serra Cassano, University of Trento).

Session 61 — Room E — Theory of Conservation Laws VII



HYP2012 — Book of Abstracts 195

For general non convex fluxes this is no more true, we provide a counterexample. However, under a sharp
assumption on f one can still pointwise define a Borel function which is the derivative of u along characteristics
(forthcoming work jointly with G. Alberti, University of Pisa, and S. Bianchini, SISSA).

Joint works with: G. Alberti (University of Pisa), S. Bianchini (SISSA), F. Bigolin (University of Trento), F. Serra

Cassano (University of Trento).
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SBV regularity results for Hamilton-Jacobi equations

Daniela Tonon
Universit Pierre et Marie Curie, Paris, France

tonondaniela83@gmail.com

We present two results on the regularity of viscosity solutions of Hamilton-Jacobi equations described in [1], [2].
When the Hamiltonian is strictly convex, viscosity solutions of Hamilton-Jacobi equations are semiconcave,

hence their gradient is BV. It is therefore of interest to see when it is SBV. The first result in this direction
was obtained by Cannarsa, Mennucci and Sinestrari in [3] but requires a very regular initial datum for the
Hamilton-Jacobi equation. First we prove the SBV regularity of the gradient of a viscosity solution of the
Hamilton-Jacobi equation

∂tu+H(t, x,Dxu) = 0 in a open Ω ⊂ [0, T ]× Rn,

under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. Thus the SBV regular-
ity holds even in the case of a bounded Lipschitz initial datum. Secondly we remove the uniform convexity
hypothesis on the Hamiltonian, considering a viscosity solution u of the Hamilton-Jacobi equation

∂tu+H(Dxu) = 0 in Ω ⊂ [0, T ]× Rn,

where Ω is open and H is smooth and convex. In this case the viscosity solution is only locally Lipschitz.
However when the vector field d(t, x) := Hp(Dxu(t, x)), here Hp is the gradient of H, is BV for all t in [0, T ]
and suitable hypotheses on the Lagrangian L hold, the divergence of d(t, ) can have Cantor part only for a
countable number of t’s in [0, T ].

These results extend a result of Bianchini, De Lellis and Robyr in [4] for a uniformly convex Hamiltonian
which depends only on the spatial gradient of the solution.
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Drosophila embryo at stage 14

As: amnioserosa (connective tissue)
LE: leading edge (actin cable)
Ep: lateral epidermis

10 h after egg laying
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Multi-scale tissular-cellular model for wound healing

Patrizia Bagnerini
DIME, Università degli Studi di Genova, P.le Kennedy-Pad D, 16129 Genova, Italy

bagnerini@diptem.unige.it

Extension of an epithelial membrane to close a hole is a very widespread process both in morphogenesis and
in tissue repair. Differently to embryos which make a perfect repair, adult wound healing can generate a mass
of fibrotic tissue which can have serious clinical consequences, from heart attacks to burns and cirrhosis (for
instance foot chronic ulcers occur in 15% of diabetical patients). A good understanding of regenerative healing
mechanisms and of how we can re-activate or reproduce them in adult setting is an important public health
issue. In embryo wound healing the main mechanism driving epithelial advance to cover a hole is the contraction
of an actin cable composed by meshworks of actin filaments (a polymer) cross-linked by a molecular motor,
Myosin II. We proposed (see e.g. [1,2]) various macroscopic (that do not take into account the positions of the
individual cells) models for simulating the contraction of an acto-myosin cable in different applications. We
propagated the wound contour by level set methods [3], a class of popular algorithms to evolve interfaces. The
models were validated either by numerical simulations or by experimental works performed in collaboration
with biologists.

We propose here to couple the previous macroscopic model (which furnishes the dynamics of the tissue) with
a cellular one (composed by a network of cells discretized as polygons and interacting through their common
boundaries). At each time step, we solve a PDE corresponding to the macroscopic model and we use the obtained
vector field as a velocity vector both in level set methods (to deplace the actin cable) and also in a cellular
model (to move individual cells). Stable network configurations are then computed by minimizing an energy
functional which allows to take into account changes in interfacial tension at cell boundaries. Moreover, the actin
cable formation involves the propagation of actin and myosin waves which will be presented. If time permits,
I will also describe an interesting transdifferentiation phenomena taking place during normal development of
Drosophila embryo: a cell of epidermis, that we called chameleon, transdifferentiates, i.e. changes its identity
and intercalates with the cells of the other compartment [4].
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Coupling hydrodynamics and biology to model and simulate algae growth

Anne-Celine Boulanger
Paris VI University

anne-celine.boulanger@inria.fr

Recently, biofuel production from microalgae has proved to have a high potential for biofuel production [1,2].
Several studies have demonstrated that some microalgae species could store more than 50% of their dry weight
in lipids under certain conditions of nitrogen deprivency [1,3,4] leading to productivities in a range of order
larger than terrestrial plants. In this context, the coupling between hydrodynamics and biology has mostly
been studied with simple hydrodynamics models in photobioreactors [5] that are narrow closed tubes in which a
turbulent flow transports the algae. We are rather interested in situations where the algae culture takes place in
small circular ponds called raceways, used for the intensive outdoor culture of algae. Carrying out experiments
on raceways is both expensive and time consuming. A model is thus a key tool to help in the optimal design
of the process but also in its operation. The one developped herein possesses hyperbolic features and is thus
delicate to analyze and simulate.

Due to the heterogeneity of raceways along the depth dimension regarding temperature, light intensity or
nutrients availability, we adopt a multilayer approach for hydrodynamics and biology. For free surface hydro-
dynamics, we use a multilayer Saint-Venant model that allows mass exchanges[6, 7, 8], forced by a simplified
representation of the paddlewheel. For the biological part, we have to deal with a great amount of potential
models and parameters. We choose to restrict ourselves to one particular species, the diatoms, and follow the
evolution of three variables : the phytoplanctonic carbon X (of particular interest for biofuel production), the
extracellular nutrients S, but also the intracellular nitrogen N, that can be seen as a nutrient storage pool in
the algae. We then build an improved Droop model that includes light effect on algae growth. In the end, our
biological system writes

∂ρX

∂t
+∇.(ρuX) = νX∆X + ρ(µ(q, I)X −RX) (1)

∂ρS

∂t
+∇.(ρuS) = νS∆S − ρλ(S, q)X (2)

∂ρN

∂t
+∇.(ρuN) = νN∆N + ρ(λ(S, q)X −RN) (3)

q =
N

X
, u = (u,w) (4)

where u is the water velocity, I is the light intensity, R is a respiration coefficient, and the growth coefficient
write ( Q0, Ql, Ks, µ̃ being constants):

µ(q, I) = µ̃ I

I+KsI+ I2
KiI

(1− Q0

q ) (5)

λ(S, q) = λ S
S+kS

(1− q
Ql

) (6)
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From those equations, we derive a similar multilayer system by performing a Galerkin approximation of every
variable followed by an integration by layers of the equations. A kinetic interpretation of the whole system will
result in an efficient numerical scheme.

We show through numerical simulations in 2D that our method is capable of distinguishing situations of
moving water or calm ponds in terms of carbon productivity. Moreover, we exhibit that a posteriori treatment of
our velocity fields can provide lagrangian trajectories which are of great interest to assess the actual light pattern
perceived by the algal cells and therefore understand its impact on the photosynthesis process. Eventually, we
consider the 3D case in its hydrodynamical part and focus on rendering an appropriate velocity field in the
pond thanks to real data measurements.
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A semi-Lagrangian scheme for mean curvature motion with nonlinear Neumann
conditions
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A numerical method for mean curvature motion in bounded domains with nonlinear Neumann boundary con-
ditions is proposed and analyzed. It consists of a semi-Lagrangian scheme in the main part of the domain as
proposed by Carlini, Falcone and Ferretti, combined with a finite difference scheme in small layers near the
boundary to cope with the boundary condition. The consistency of the new scheme is proved for nonstructured
triangular meshes in dimension two. The monotonicity of a regularized version of the scheme with some ad-
ditional vanishing artificial viscosity is studied. Details on the implementation are given. Numerical tests are
presented.

Joint work with: Maurizio Falcone Dipartimento di Matematica, Università Roma ”La Sapienza”
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Flux-based level set method for implicitly defined interfaces

Peter Frolkovič
Slovak University of Technology, Faculty of Engineering, Radlinskeho 11, 81368 Bratislava, Slovakia

peter.frolkovic@gmail.com

We present recent results concerning a development of flux-based level set method for several problems involving
hyperbolic equations. The flux-based level set method [1,2] is used to solve the problems of moving interfaces
defined implicitly where the movement is prescribed by external velocity field and variable speed in normal
direction including a dependence on a curvature.

In this talk we introduce new results concerning, firstly, computation of a signed distance function, and,
secondly, solution of a sequence of linear hyperbolic equations to extrapolate data available only at the interface.
In both cases we apply an immersed interface formulation that is well-known numerical technique for parabolic
and elliptic type of PDEs, but rarely used for hyperbolic equations.

Some applications will be presented including groundwater flow with moving boundary [4].
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12 Abstracts of contributed lectures — Thursday 17.00–19.30

12.1 Session 64 — Room D — Numerical Methods XVIII

S64 – Numerical Methods XVIII – Room D, 17.00–17.30

A Well-Balanced Multi-Dimensional Reconstruction Scheme for Hydrostatic
Equilibria

Roger Käppeli
Seminar for Applied Mathematics, ETH Zürich, Switzerland

roger.kaeppeli@sam.math.ethz.ch

Conservation laws with source terms, i.e. balance laws, allow steady state solutions where the flux divergence is
exactly balanced by the source term. Standard high-resolution finite volume schemes do not preserve a discrete
version of this balance and generate spurious waves that can obscure waves of interest. The main reason for
the failure of standard schemes to preserve this equilibrium is due to the fact that it cannot be represented
by simple polynomial functions. Hence, standard reconstruction techniques lead to non-zero truncation errors
inducing spurious waves. Schemes that preserve exactly some discrete version of this equilibrium are termed as
well-balanced.

In this talk we consider the equations of gas dynamics with gravitational source terms:

∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (vρv) +∇P = −ρ∇φ

∂E

∂t
+∇ · [(E + P )v] = −ρv ·∇φ,

(1)

expressing the conservation of mass, momentum and total energy. Here ρ is the mass density, v the velocity
and E = ρe+ ρ

2v
2 the total energy density, being the sum of internal and kinetic energy density. The equations

of gas dynamics must be closed by an equation of state p = p(ρ, e) describing the thermodynamic properties
of the gas. The source terms on the right hand side stem from gravity, where the gravitational potential φ is
either given analytically or is determined by the Poisson equation

∇2φ = 4πGρ, (2)

where G is the gravitational constant. These equations are of practical importance in many applications and
we shall focus here on an astrophysical context.

An interesting steady state arising in a multitude of (astrophysical) applications is the hydrostatic state,
where the pressure gradient exactly balances the gravitational force. For now, the existing schemes in the
literature have been developed essentially for a constant gravitational acceleration. These schemes rely on an
analytic reconstruction by simply integrating the hydrostatic equilibrium on a zone-by-zone basis. However,
such analytical formulas are generally not available for the realistic astrophysical case of a multi-dimensional
hydrostatic equilibrium, potentially itself the outcome of a dynamical simulation. We present a second-order
well-balanced multi-dimensional reconstruction technique based on a local discrete representation of the hy-
drostatic equilibrium. Numerical quadrature rules are then used to build the equilibrium reconstruction on a
zone-by-zone basis.

We will demonstrate the performance of our well-balanced reconstruction on a large number of numerical
experiments, including realistic simulations of neutron stars and core-collapse supernovae explosions. Moreover,
if time permits, we will address the extension of the scheme to higher order and magneto-hydrostatic equilibria.

Joint work with: Siddhartha Mishra (Seminar for Applied Mathematics, ETH Zürich, Switzerland)
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S64 – Numerical Methods XVIII – Room D, 17.30–18.00

Well-balanced bicharacteristic-based scheme for two-layer shallow water flows
including wet/dry fronts

Michael Dudzinski
Institute of Numerical Simulation, Hamburg University of Technology, Schwarzenbergstraße 95 E, 21073

Hamburg, Germany
michael.dudzinski@tu-harburg.de

We aim to present a new well-balanced finite volume scheme for multidimensional multilayer shallow water
flows including wet/dry fronts. The method developed here is constructed in the framework of the Finite
Volume Evolution Galerkin (FVEG) schemes. The FVEG methods couple a finite volume formulation with
evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic
systems. However, in the case of multilayer shallow water flows the required eigenstructure of the underlying
equations is not readily available. Thus we approximate the evolution operators numerically. This approximation
procedure can be used for arbitrary hyperbolic systems. We derive a well-balanced approximation of the
evolution operators and prove that the FVEG scheme is well-balanced for the multilayer lake at rest states even
in the presence of wet/dry fronts.

Joint work with: M. Lukáčová-Medvidová (Institue of Mathematics, Johannes Gutenberg University, Staudingerweg 9,

55128 Mainz, Germany, e-mail: lukacova@mathematik.uni-mainz.de )
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Well-balanced and positivity preserving DG schemes for shallow water flows with shock
capturing by adaptive filtering procedures

Sigrun Ortleb
Faculty of Mathematics und Natural Sciences, University of Kassel, Germany

ortleb@mathematik.uni-kassel.de

In this talk, we use a high order discontinuous Galerkin (DG) method on unstructured triangular grids to solve
the shallow water equations (SWE).

Without an additional damping mechanism for the DG scheme, it is well-known that the numerical solution
will suffer from Gibbs oscillations close to discontinuities of the exact entropy solution. Hence, in order to
introduce a small but sufficient amount of numerical dissipation to the DG scheme, we developed a novel
damping strategy based on spectral viscosity [1], see the work in [2,3]. More precisely, we derived a relationship
between the introduction of spectral viscosity to discontinuous Galerkin methods on unstructured triangular
grids and modal filtering. In our set-up, the high order viscosity term is based on the Sturm-Liouville operator
corresponding to the chosen triangular-grid DG basis, i.e. the Proriol-Koornwinder-Dubiner(PKD) polynomials
(see e.g. [4]). The designed artificial viscosity can then be efficiently implemented as a modal filter which is
applied to the numerical solution after each time step of the basic DG scheme. This new strategy serves as a low
cost stabilizing mechanism for solutions having strong shocks - as for each time step only the multiplication of the
coefficients of the approximate solution with precomputed factors is necessary. With respect to an increasing
polynomial degree N , high order accuracy of modal filtering applied to the PKD expansions of sufficiently
smooth functions has been proven in [2]. Additionally, we developed adaptive modal filters to prevent order
deterioration in case of grid refinement.
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The aim of modal filtering in general is to stabilize the numerical scheme, but by construction no effort is made
to obtain an oscillation-free approximation. The damping strategy is therefore combined with a postprocessing
technique in order to reconstruct a more accurate pointwise approximation from the available information. This
postprocessing is only carried out at output times to visualize an essentially non-oscillatory numerical solution.
Our results in [2,3] show that the application of the digital total variation (DTV) filter [5] as a postprocessor is
a very promising approach in this situation. The DTV filter was originally developed in the context of image
processing and has also been applied to the Chebychev pseudospectral method in [6].

In [2], our focus was put on scalar conservation laws in order to study the principle mechanisms of the
proposed techniques. In [3], we then demonstrated the viability of this new damping strategy for the Euler
equations of gas dynamics. Now, we focus on the application of our DG schemes with adaptive filtering routines
to the shallow water equations. In this case, we have to deal with several new challanges: As in the case of
the Euler equations, we have to preserve the positivity (or non-negativity) of certain physical quantities - in
the context of the SWE this refers to the water height. Furthermore, in order to preserve certain steady state
solutions with non-constant bottom topography, it is important that the scheme is well-balanced. In this talk,
we will follow the ideas of Xing, Zhang and Shu in [7] regarding positivity preservation and well-balancedness
but stay with the modal filtering procedures as shock capturing strategy. We will furthermore extend this
approach to implicit time integration where the nonlinear systems are solved by the Jacobian-free Newton-
GMRES method. As in the case of the TVB limiter used in [7], it is not a priori clear how to combine the
requirements of positivity preservation and well-balancedness with the shock capturing mechanism. Hence, we
will also give some guidelines for the case that shock capturing is done by adaptive modal filtering.
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S64 – Numerical Methods XVIII – Room D, 18.30–19.00

Order conditions on IMEX Runge-Kutta schemes for hyperbolic systems with
stiff relaxation

Sebastiano Boscarino
Dipartimento di Matematica e Informatica, Università di Catania

boscarino@dmi.unict.it

IMEX schemes are very effective in the numerical solution of hyperbolic systems with relaxation, since they
allow an explicit treatment of the flux (which is in general non linear), still avoiding an excessive restriction on
the time step due to small relaxation time ε. The determination of the coefficients defining IMEX Runge-Kutta
are based on order conditions for additive Runge-Kutta, which are more restrictive than the classical order
conditions for Runge-Kutta methods, because of the coupling of the implicit and explicit scheme [1]. Such
conditions, however, only guarantee the classical order of accuracy, i.e. the one obtained when the time scale is
fully resolved (∆t < ε). For small values of ε, we distinguish between hyperbolic and parabolic relaxation. In
the first case, as ε → 0, the system relaxes to a reduced hyperbolic system, provided the so-called subcharacter-
istic condition is satisfied. The capability to capture such limiting behavior is obtained by adopting an L-stable
implicit scheme, however a degradation of accuracy is usually observed for intermediate values of the relaxation
parameter. If one wants to improve the accuracy for non negligible values of the relaxation parameter, then
one has to perform an asymptotic expansion of the exact and numerical solution in terms of ε, and impose
that the two expansions agree to a given order. Such procedure generates new order conditions, which allow
the construction of uniformly accurate schemes in ε [2]. In the case of diffusive relaxation, the situation is
even more complicated, since the small parameter appears both in the relaxation term and in the hyperbolic
part. If one insists in treating the hyperbolic part by an explicit scheme, then more conditions arise when
matching the various terms of the exact and numerical solution in the expansion in ε. A detailed analysis of
such additional conditions is presented, and it is shown how to use them to construct a second order IMEX
scheme for hyperbolic systems with diffusive relaxation, with explicit treatment of the hyperbolic part [3].
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Well posedness for Schrödinger type equations
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We are going to prove some results about well posedenss in L2 and in the Sobolev space H∞ = ∩sH
s of the

Cauchy problem for the equation
P (t, x,Dt, Dx)u(t, x) = f(t, x),

where t ∈ [0, T ], x ∈ R and P is an ansotropic evolution differential operator of degree of evolution p ≥ 2,
p integer, with real characteristics; to have real characteristics is a necessary condition for well-posedness in
Sobolev spaces of the Cauchy problem, by the Lax-Mizohata theorem.

Such a kind of operators are usually referred to as ”p evolution operators of Schrödinger type”, since the
Schrödinger operator (p = 2) is the most famous representative of the class. Notice that for p = 1 we are dealing
with hyperbolic equations. Existence and uniqueness of the solution of the Cauchy problem for Schrödinger
type operators can be proved by adapting the energy method, which is a typically hyperbolic technique. Indeed,
this class of operators can be also regards as a generalization of the hyperbolic class.

We are going to consider both operators P of the first order with respect to ∂t, and operators of an arbitrary
order m. We are going to give decay conditions on the coefficients of P as |x| → ∞ that are sufficient to get
existence and uniqueness of the solution in L2 or H∞.
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Global solutions of the two-component Camassa–Holm system

Katrin Grunert
Norwegian University of Science and Technology (NTNU)
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The two-component Camassa-Holm (2CH) system is given by

ut − utxx + κux + 3uux − 2uxuxx − uuxxx + ηρρx = 0,

ρt + (uρ)x = 0,

with arbitrary κ ∈ R and η ∈ (0,∞). In the case η = 1, under the assumption that u(t, x) → 0 and ρ(t, x) → 1
as x → ±∞ at any time t, the above system has been derived in the context of shallow water theory, where
u(t, x) describes the horizontal velocity and ρ(t, x) the horizontal deviation of the surface from equilibrium.
Furthermore, it is one out of many generalizations of the famous Camassa–Holm (CH) equation, which has
been studied intensively. Thus naturally the question arises which results derived for the CH equation are
also valid for the 2CH system. In this talk we will show how to describe global weak solutions. This question
is of special interest since the 2CH system, like the CH equation, enjoys wave breaking and in general there
are two possibilities how to continue solutions thereafter. Namely, either the energy is preserved which yields
conservative solutions or if energy vanishes from the system, we obtain dissipative solutions. Additionally, we
will admit initial data and hence solutions with nonvanishing asymptotics.
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Simulations of the Lifshitz-Slyozov equations: the role of coagulation terms in the
asymptotic behavior

Frédéric Lagoutière
Université Paris-Sud 11 (Orsay)
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We consider the Lifshitz-Slyozov system that describes the kinetics of precipitation from supersaturated
solid solutions. If we denote by f(t, x) the polymer density at time t and size x, and by c(t) the monomer
density, the system reads 





∂tf + ∂x(V f) = 0, t ≥ 0, x ≥ 0,
V (t, x) = x1/3c(t)− 1, t ≥ 0, x ≥ 0,
c(t) +

∫∞
0 xf(t, x)dx = ρ, t ≥ 0,

where ρ is the initial (given) total mass of monomer and polymer.
We design a specific Finite Volume scheme to investigate numerically the behavior of the solutions, in particular
the large time asymptotics. Our purpose is two-fold: first, we introduce an adapted scheme based on down-
winding techniques in order to reduce the numerical diffusion; second, we discuss the influence of coagulation
effects on the selection of the asymptotic profile. This allows to understand better some conjectures by Lifshitz
and Slyozov.

Some important references for this system are
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The Generalized Buckley-Leverett System

Wladimir Neves
UFRJ–Federal University of Rio de Janeiro
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We show the solvability of a proposed Generalized Buckley-Leverett System, which is related to the multi-
dimensional Muskat Problem. Moreover, we discuss some important questions concerning singular limits of the
proposed model.

Joint work with: Nikolai Chemetov (CMAF–University of Lisbon)
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Grassmannians and multisoliton KP-II solutions
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Department of Mathematics, University of Bologna
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We consider a family of exact (N,M) soliton solutions to the KP-II equation introduced in [4]

(−4ut + uxxx + 6uux)x + 3uyy = 0.

A (N,M) soliton solution is a real bounded regular solution u(x, y, t) which has N (resp. M −N) line soliton
solutions in asymptotics (y → +∞) (resp. (y → −∞)). These solutions may be classified in terms of the
Schubert decomposition of the Grassmannian manifold Gr(N,M) where the solution of the KP-II equation
is defined as a torus orbit (ref. [10], [3],[7]). To each point in the Grassmannian there is associated a real
and totally positive N × M matrix A ([8],[9],[5] and ref. therein) which in turn in associated to a Darboux
transformation ([6]).

In [1] we associate to each point in the Grassmannian a compatible set of divisors sitting on a m-curve and
give an explicit representation of the matrix A. We discuss the relation of our results with a conjecture in [2].
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A positive, well-balanced and entropy-satisfying scheme for shallow water flows.
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We consider the Saint-Venant system [2] for shallow water flows with non-flat bottom

∂H

∂t
+

∂

∂x

(
Hu

)
= 0 (1)

∂(Hu)

∂t
+

∂

∂x

(
Hu2 +

g

2
H2

)
= −gH

∂zb
∂x

(2)

where H(x, t) and u(x, t) respectively denote the water depth and the averaged velocity and zb(x) represents
the bathymetry. The free surface is defined by η = H + zb.
This system is a well-known hyperbolic system of conservation laws that approximately describes various geo-
physical flows, such as rivers, coastal areas, oceans when completed with a Coriolis term, and granular flows when
completed with friction. Numerical approximate solutions to this system may be generated using conservative
finite volume methods, which are known to properly handle any shocks and contact discontinuities.

Various efficient and stable numerical schemes have been proposed to solve (1)-(2) and preserve relevant
equilibria. Among other, the hydrostatic reconstruction strategy [1] allows to derive so called well-balanced
schemes but the numerical behavior of this technique e.g. when considering large bottom slopes and small
water depth is not fully satisfactory.

Session 66 — Room G — Numerical Methods XIX



208 14th Int’l Conference on Hyperbolic Problems: Theory, Numerics, Applications

We propose a positive, consistent and well-balanced scheme that does not require any reconstruction of the
variables at the interfaces. The scheme admits a discrete entropy and a second order extension in space and in
time. The numerical treatment of the topography source term is the crucial point of this paper and is based on
the Boltzmann-Vlasov equation describing, at the microscopic level, the shallow water equations.

The proposed scheme is confronted with classical test cases.
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A new model and numerical method for
compressible two-fluid Euler flow

Barry Koren
CWI, Amsterdam, The Netherlands
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In this paper, a new formulation is derived for the five-equation model by Kapila [1] for compressible, two-
fluid Euler flow: a model that assumes pressure and velocity equilibrium across the two-fluid interface. The
formulation does not explicitly consider the two-fluid interface; it assumes that the flow is a mixture of the two
fluids. The formulation differs from that by Kapila in that its fifth equation is a conservation-law-like energy-
exchange equation for one of the two fluids. No equation is used to describe the topology of two-fluid interfaces.
The complete system of equations is written in integral form, which directly allows for the application of a
finite-volume method and Riemann solver. For the energy exchange, two terms are derived: a mechanical work
term and a thermodynamic work term.

To evaluate the cell-face states for the fluxes of mass and energy (of both the bulk fluid and one of the
two separate fluids), and for the flux of momentum (of the bulk fluid only), an approximate Riemann solver is
constructed. Left and right cell-face states for the Riemann solver are constructed by a limited, higher-order
accurate interpolation.

The Riemann solver is also used for the evaluation of the energy-exchange terms. Both terms contain first-
order spatial derivatives, and need to be integrated over the cells, including the cell faces. At the cell faces, the
energy-exchange terms are not Riemann integrable. This difficulty is circumvented by integrating the terms at
the cell faces in solution space, instead of in physical space. For this integration, consistent and practical use is
also made of the approximate Riemann solver.

In numerical tests it is shown that the model and numerical method perform well for both two-fluid interface
problems and two-fluid mixture problems. Physically correct solutions are obtained without any tuning or post-
processing. Particularly for standard shock-bubble-interaction problems, it appears that the physical model
and numerical method accurately resolve detailed flow features (Figure 1).
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A Multi-Scale Approach for Infiltration Processes in Porous Media
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We consider the infiltration of a wetting fluid (e.g. water) into a porous medium, D ⊆ R2, which is initially
fully saturated by a nonwetting fluid (e.g. oil). Thereby different patterns can form. Either the solutions can
consist of a planar front, or instabilities can occur and preferential flow paths (fingers) form. Both cases have
in common that saturation overshoots can appear (DiCarlo [2]). We are interested in solutions which contain
such saturation overshoots.
Neglecting gravitational forces and assuming the fluids to be immiscible and incompressible, the governing
equations for this two-phase flow problem are given by the Darcy-law and the mass balance law for each phase.
For the capillarity-free case these laws lead in the fractional flow formulation to a first-order nonlinear evolution
equation

St + div (vf(S)) = 0 in D × (0, T ), (1)

with the unknown phase saturation S = S(x, t) ∈ [0, 1] and a nonlinear flux function f = f(S). In the case
of a heterogeneous porous medium the flux function f = f(x, t, S) is discontinuous. A coupled Darcy-type
pressure velocity equation closes the system for the unknown velocity v = v(x, t) ∈ R2. This system can
have multiple weak solutions: there is a whole family of solutions involving non-Laxian so-called nonclassical
transitional waves [9]. The saturation overshoots mentioned above can be identified as nonclassical waves. In
contrast to the well understood case of classical Laxian waves nonclassical waves are not fully determined by
the characteristic information.
We are interested in the unique physically relevant solution which is selected as the singular limit of solutions of
regularized equations [5]. For the regularized equation capillary pressure effects have to be added. Our model
depends not on the static pressure pc alone, but involves a rate-dependent contribution, called dynamic pressure
[4]. This leads to the regularization of (1) in D × (0, T )

Sε,τ
t + div (vf(Sε,τ )) = −ε div

(
λ(Sε,τ )∇pstaticc (Sε,τ )

)
+ τε2 div

(
λ(Sε,τ )∇Sε,τ

t

)
, (2)

with ε, τ > 0 and λ(Sε,τ ) = λn(Sε,τ )f(Sε,τ ), where λn is the mobility of the nonwetting phase.
In general nonclassical waves cannot be approximated numerically by conventional schemes for conservation laws
like (1) since they converge against the classical Kruzkov solution. But for direct numerics it is too expensive
to solve the regularized equation (2) on the whole domain, because a very fine grid and very small time steps
are necessary. The solution of the regularized equation is only of importance close to a transitional wave. We
are interested in the correct behaviour of (1) on the macroscale. Apart from a transitional wave it is adequate
to use the non-regularized equation [7].
We analyze the singular limit in the case of a discontinuous flux function. We couple both models to overcome
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the problems mentioned above and present a new multidimensional mass-conserving numerical method [6, 8]
which belongs to the class of Heterogeneous Multiscale Methods (HMM) in the sense of E&Engquist [3]. For
the regularized equation (2) we use a special solver on a small microscale space-time domain whereas we use
a standard Finite Volume scheme for the conservation law (1) on the macroscale. The additional information
which we gain on the microscale serves as an update with the help of a novel flux function, which is a key part
of the approximation for the multidimensional setting and was introduced in 1D in [1]. We present numerical
results of the HMM for homogeneous as well as for heterogeneous porous media and demonstrate the efficiency
of the new method.
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Compactness of central schemes for 1D hyperbolic systems

Bojan Popov
Texas A&M University
popov@math.tamu.edu

In this talk we will address compactness and convergence issues for staggered central schemes in the context
of 1D hyperbolic systems of conservation laws. Although an invariant domain and convergence results were
proven for the LxF scheme for the p-system in Eulerian coordinates, in the Lagrangian case it is still not
known whether we can prove compactness for bounded (or BV) initial data because the invariant domain of the
schemes is unbounded. For the isothermal case (γ = 1), this is a well-known conjecture that vacuum cannot

Session 66 — Room G — Numerical Methods XIX



HYP2012 — Book of Abstracts 211

form. Assuming compactness at any given time and using a global CFL, we were able to prove that the total
increase of the Riemann invariants per time step of the LxF scheme can be bounded by the entropy production of
the scheme, similar bounds should hold for γ > 1. What we numerically observe is that we do have compactness
for a large class of admissible initial data which we will describe in this talk. For the second order NT scheme
we will show that the component-wise limiting can result in violation of invariant domain property and even
blowup in the L∞ norm in some cases. In order to numerically observe invariant domain property for the NT
scheme one has to consider characteristic decomposition and use characteristic-wise limiting. In this setting,
for the two-component chromatography, we were able to prove that the NT scheme has an invariant domain
property. However, the NT invariant domain is not the same as the LxF invariant domain in that case. This
seems to be a generic property of central second order schemes. Numerical evidence and theoretical results will
be presented.
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New Central-Upwind Schemes for Euler Equations of Gas Dynamics

Alexander Kurganov
Tulane University
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Godunov-type schemes are projection-evolution numerical methods for hyperbolic systems of conservation laws.
In these schemes, the computed quantities are the cell averages, which are used to construct a global piecewise
polynomial approximation, which is then evolved in time to the next time level using the integral form of
conservation laws. Since piecewise polynomial reconstructions are generically discontinuous at cell interfaces,
one has to solve the (generalized) Riemann problems to incorporate upwinding needed to ensure nonlinear
stability and high resolution achieved by the resulting Godunov-type upwind scheme.

Godunov-type central schemes offer a popular Riemann-problem-solver-free alternative to upwind schemes.
The first high-resolution central scheme was constructed in [6] using the staggered grid, which allows one to
evolve the solution in time using the control volumes that contain the Riemann fans generated at the cell
interfaces. This makes the staggered central schemes simpler and less computationally expensive, yet more
diffusive than their upwind counterparts.

In a series of our previous works ([1–5]), we have developed a new class of nonstaggered Godunov-type central
schemes—central-upwind schemes—that combine the simplicity and universality of the central approach with
high accuracy and low dissipation of upwind schemes. The key idea behind the derivation of the central-upwind
schemes is to use the upwinding information to construct control volumes of variable size proportional to the
one-sided local speeds of propagation of the waves emerging at cell interfaces. The solution at the new time level
is then realized in terms of its cell averages over a strictly nonuniform grid with the twice larger number of cells
than the original grid. Therefore, this intermediate solution must be projected back onto the original grid. To
accurately project the intermediate data,we first reconstruct linear pieces over the nonuniform cells and then
average the obtained reconstruction over the original (nonstaggered) grid. As it has been demonstrated in [1],
a sharper projection procedure leads to the reduction of numerical dissipation and thus to enhanced resolution
of contact waves.

However, the resolution of the contact waves achieved by the central-upwind schemes from [1] is still not as
good as the resolution achieved by high-order upwind schemes. We therefore improve the central-upwind schemes
by further reducing the amount of numerical diffusion, which in turns will lead to the enhanced resolution of
contact discontinuities and other slow moving waves. The new method is based on a more accurate projection
step, which is performed by taking into account a particular information on the waves to be captured by the
central-upwind scheme.
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The new projection procedure hinges on specific properties of contact discontinuities. Therefore, the new
central-upwind schemes cannot be viewed as a “black-box” solver any more. On the other hand, the enhanced
resolution allows to outperform upwind schemes without solving (generalized) Riemann problems.

When the new central-upwind scheme is applied to an isolated contact wave, both the pressure and velocity
remain constant. This is an extremely important feature of the new scheme as none of the existing central
schemes is capable of satisfying this property.

Even though the idea behind the new central-upwind scheme is presented in the context of the Euler equations
of gas dynamics, it gives rise to a general framework for designing central-upwind schemes for a wide range
of nonlinear hyperbolic problems: One has to first identify quantities which remain continuous across contact
waves and then to build a central-upwind scheme with the projection step adjusted accordingly.
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Mathematical modeling for a free boundary problem of hyperbolic type and
properties of its solution
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In this talk, we treat the following physical phenomenon gA thin tape is pasted on a plate. The tape is
peeled from the plate by lifting up one of the edge of the tapeh. We are interested in the behavior of the peeling
front, especially, the phenomenon of self-excitation vibration.
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We assume that the movement of the tape is governed by a hyperbolic equation and is affected by the peeling
front. The shape of the tape is described by the graph of a function u : Ω×{t > 0} → R, where Ω is an interval
of R. The action of this phenomenon is given by

(J) J(u) =

∫ T∗

0

∫

u>0

(
u2
t − u2

x−Q

)
dxdt u ∈ K ,

where K is a suitable function space. The effect of the peeling front is described by a positive constant Q
(adhesion).

Here, a stationary point is assumed to be smooth in order to derive the Euler-Lagrange equation. We have
the following hyperbolic equation and the free boundary condition

(P )

{
utt − uxx = 0 in {(x, t);x > −l0, t > 0} ∩ {u > 0},
u2
t−u2

x +Q = 0 on {(x, t);x > −l0, t > 0} ∩ ∂{u > 0},

with the initial conditions

(I)

{
u(x, 0) = e(x) on (−l0, 0),
ut(x, 0) = g(x) on (−l0, 0),

and the boundary condition
(B) u(−l0, t) = f(t) on [0,∞),

where e(x), g(x) and f(t) are given functions, and l0 is a positive constant. The initial condition (I) implies
that the thin tape has been already peeled from the plate on the interval (−l0, 0), and the boundary condition
(B) corresponds to the situation in which the edge of the tape is lifted up by f(t).

Remark (i) If we extent the integral region of (J) to the entire tape, i.e., {u ≥ 0}, the non-linear term in
the Lagrangian would be a characteristic function whose support was {u > 0}. The Euler-Lagrange equation
would be a hyperbolic equation that, formally, includes δ∂{u>0} as a non-linear term. In this phenomenon, the
existence of the outer force on the peeling front ∂{u > 0} appears to indicate this is a natural expression. If
we regard this phenomenon as the propagation of discontinuity of the first differential, then the equation which
includes δ-function can be justified in the distribution sense.

(ii) If the linear approximation of the asymptotic expansion of the solution holds, then the second equation
of (P ) means that the characteristic polynomial is not equal to zero. Therefore, we treat the case in which its
characteristic condition does not hold.

(iii) From the derivation of the free boundary condition, we regard the second equation of (P ) as a conservation
law. Therefore, the quantity of energy passing out through the free boundary is Q. Based on the balance with
the Q and the vibration of the tape, the movement of the free boundary is determined.

(iv) Adding physical parameters τ and ρ to the second equation of (P ), we can derive

∣∣∣∣
dx

dt

∣∣∣∣ =

√
τ

ρ
− Q

ρu2
x

,

where τ is the tension and ρ is the line density. This implies that, Q causes the speed of the free boundary to
be slower than the propagation speed of the tape. This causes the vibration of the tape.

Theorem 1([3, Theorem 3.4]). We impose several assumptions on e, f and g. For any T > 0 , there exists
a unique solution to (P ), (I) and (B).

Theorem 2([3, Theorem 4.1]). Let us assume that

f ′(η) = 0 for all η > Tp,

with a certain number Tp satisfying Tp > l0. Then, the free boundary moves periodically.
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Penalty methods for edge plasma transport in a tokamak

Thomas Auphan
Aix-Marseille Université, LATP
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One of the main issue for the fusion by magnetic confinement is the wall-plasma interaction. The plasma
transport essentially occurs along the magnetic field lines. To protect the wall from the high temperature
plasma, an obstacle called limiter which interrupts the field lines is placed on the edge of the tokamak. The
penalization method is used to take into account the limiter for numerical simulations of the edge plasma
transport.
To construct our method, we first use a simplified 1D model considering only the plasma density and momentum.
This nonlinear hyperbolic system is very similar to the shallow-water equations. At the plasma-limiter interface,
there is a Dirichlet boundary condition on the Mach number due to the Bohm criterion [1]. To take into account
the boundary conditions, we propose a penalty method, inspired from [2], which does not generate any spurious
boundary layer. This is confirmed by a BKW asymptotic expansion and numerical tests which show an optimal
convergence rate when the penalty parameter tends to 0 [3,4]. To perform the numerical experiments, we
implement a second-order finite volume scheme using: VFRoe ncv flux, MUSCL reconstruction with slope
limiter and a semi-implicit time discretization.
The resulting penalty method and the asymptotic analysis is extended to more general quasi-linear hyperbolic
boundary value problems.
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A hyperbolic model for phase transitions in porous media
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We consider the following model for the isothermal and inviscid fluid flow through a porous medium, in presence
of liquid-vapor phase changes: 





vt − ux = 0 ,
ut + p(v,λ)x = −αu ,
λt =

1
τ (p(v,λ)− pe)λ(λ− 1) ,

for t > 0 and x ∈ R. Here v denotes the specific volume, u the velocity, p the pressure, λ ∈ [0, 1] the mass-density
fraction of the vapor in the fluid. The flow is hosted in a medium that induces a friction force proportional,
with constant α > 0, to the linear momentum, with opposite direction. The constants τ > 0 and pe > 0 are the
characteristic reaction time and the equilibrium pressure, respectively. See [2] and [3] for related models.

We establish the existence and uniqueness of traveling waves in a wide range of situations. More precisely,
the end states may be formed either by pure phases or mixtures; in the latter case, the pressure equals the
equilibrium pressure. An interesting mathematical feature of the problem lies in the fact that the associated
dynamical system turns out to be singular at points where the sonic and the equilibrium curves meet. Details
are contained in [1].
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Lipschitz Semigroup
for an Integro–Differential Equation for Slow Erosion
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Dept. of Mathematics and Applications, Milano-Bicocca University, Italy
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We consider a model derived in [1] describing the changes for large times in the standing profile of a hill due to
material sliding on it:

Ut(t, x)−
(
exp

∫ +∞

x
f (Ux(t, y)) dy

)

x

= 0 . (1)

Here x is the space variable, U is the height of the profile, and t represents the total mass of moving layer
that slid through. The slope of the profile Ux is assumed to remain strictly positive. The erosion function f ,
depends only on the slope and denotes the rate of mass being eroded or deposited per unit length and per unit
mass passing through. There is a critical slope where no interaction happens and f vanishes. In a normalized
model one could choose the critical slope to be 1. If the slope is bigger than 1, then f > 0 and erosion happens,
so that the moving layer grows. If the slope is smaller than 1, then f < 0 and part of the moving layer deposits
on the standing bed. In general, the erosion function f is non-linear, therefore the solutions of (1) may well
lose regularity. Under suitable assumptions on f , the slope Ux remains uniformly bounded in t. We are here
interested in the case where the erosion function f allows the development of singularities in the profile U . So
we are faced with the problem of defining f(Ux) where Ux could be a distribution. In [3] this problem was
addressed and weak (possibly discontinuous) solutions to (1) were shown to exists. We are here interested in
showing the existence of a Lipschitz continuous (with respect to time and the initial data) semigroup of such
solutions.

The main point is to find out the variable which depends in a Lipschitz way from the initial data. Given a
profile U(t, x) satisfying U(t, x2)−U(t, x1) ≥ κ (x2−x1) for all x1, x2 ∈ R, x1 ≤ x2, we introduce the (Lipschitz
continuous) inverse function X = X(t, u) which is the graph completion of the inverse in space of U , X(t, u) = x
iff u ∈ [U(t, x−), U(t, x+)]. Define the function z(t, u) to be the u-derivative of X(t, u), i.e., z(t, u) =̇ Xu(t, u).
In the case of a smooth function U , we can rewrite the integral in (1) as

∫ +∞

x
f (Ux(t, y)) dy =

∫ +∞

U(t,x)
g (z(t, v)) dv (2)

where the function g is defined by g(s) = s f(1/s) Remark that the right hand side in (2) is well defined also if
U(t) ∈ BV(R;R). Therefore (2) can be used as a definition of the integral of the non linear function f of the
measure Ux. Through a generalized wave front tracking algorithm, we will construct approximate solutions to
(1), (2) which converge strongly to a Lipschitz semigroup z(t, u) = (Stzo) (u) whose trajectories are solutions
to (1), (2) and satisfies

‖Stz0 − St̄z1‖L1 ≤ L (‖z0 − z1‖L1 + |t− t̄|) .
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Nonlinear hyperbolic balance laws coupled with ordinary differential equations
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Systems composed by PDEs and ODEs can be used for the description of complex phenomena, whose evolution
has both macroscopic and microscopic behaviors.

Similar multiscale models are used, for example, in the simulation of the blood flow in the human body: the
main parts of the circulatory system are modeled by PDEs, while the remaining parts by ODEs. Other possible
applications of such models are: traffic flows, supply chain, particles inside fluids.

In the talk we present a nonlinear hyperbolic system of balance laws coupled with a system of ordinary
differential equations:






∂tu(t, x) + ∂xf(u(t, x)) = g(u(t, x)), t > 0, x > γ(t),

ẇ(t) = F (t, w(t), u(t, γ(t)+)) , t > 0,

γ̇(t) = Π(w(t)), t > 0,

b (u(t, γ(t))) = B(t, w(t)), t > 0,

u(0, x) = uo(x), x > γ(0),

w(0) = wo,

γ(0) = xo,

More precisely, the ordinary differential equations influence the solution to the balance laws by means of the
boundary term b (u(t, γ(t))) = B(t, w(t)), where γ(t) describes a moving boundary, and, at the same time, the
balance laws modify the vector field F of the ordinary differential equations. We discuss existence and well
posedness of the Cauchy problem of this coupled system.
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Time and space discrete scheme to suppress numerical solution oscillation for the
neutron transport equations
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The neutron transport equations which are hyperbolic partial differential equations used in radiation shield-
ing and nuclear reaction system, as well as medicine realm, are linearized version of the equation originally
developed by Boltzmann for the kinetic theory of gases. There exit numerical solution oscillation for typical
discrete scheme when solving multi-group multi media sophisticated time-dependent neutron transport equa-
tions which brings difficulty for mathematics and physics analysis. Especially for pivotal physical quantity, we
can not take the key physical progress for the numerical solution oscillation.

In this paper, the numerical solution oscillation for sophisticated time dependent neutron transport equations
is investigated.The influence of time discrete scheme and space discrete scheme on this oscillating phenomenon is
analyzed for neutron transport equations. The typical time discrete scheme does not consider the adaptive time
step. Therefore the physical curve about differential quantity for time variable exits numerical oscillation.The
time step is given by physical progress in a general way and the time step change is very large(some magnitude
difference) for the whole physical progress. The second-order time evolution scheme for time variable is very
suit to adaptive time step problem and suppresses the numerical solution oscillation. Moreover, the linear
discontinuous finite element method for space variable is an asymptotic preserving scheme and restricts the
oscillation problem which exits in exponential method and diamond difference. Numerical experiments show
that second-order time evolution scheme and linear discontinuous finite element method yield more accurate
results and provide very smooth physical quantity curves.

References

[1] Adams M.L., Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems, Nucl.Sci.Eng,
137. (2001), pp. 298-333

[2] Coelho P. J., Bounded Skew High-Order Resolution Schemes for the Discrete Ordinates Method, J.Comput.Phys
175. (2002), pp. 412-437
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Microscopically Implicit-Macroscopically Explicit schemes for kinetic models
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In this talk a new class of numerical methods for the BGK model of kinetic equations is presented. The schemes
proposed are implicit with respect to the distribution function, while the macroscopic moments are evolved
explicitly. In this fashion, the stability condition on the time step coincides with a macroscopic CFL, evaluated
using estimated values for the macroscopic velocity and sound speed. Thus the stability restriction does not
depend on the relaxation time and it does not depend on the microscopic velocity of energetic particles either.

This generalizes previous results presented in [4], where only the stiffness due to the relaxation time was
addressed, as in [1] and [2]. With the technique proposed here, the updating of the distribution function requires
the solution of a linear system of equations, even though the BGK model is highly non linear. Thus the proposed
schemes are particularly effective for high or moderate Mach numbers, where the macroscopic CFL condition
is comparable to accuracy requirements.

We show results for schemes of order 1 and 2, and the generalization to higher order is sketched, [3]. We also
show that these schemes enjoy the Asymptotic Preserving (AP) property of [1], that is they recover the correct
asymptotic limit for small and vanishing relaxation times. Moreover, the schemes proposed also preserve the
opposite free molecular flow limit of very large relaxation times.

This technique can be generalized to other models, since it relays on the possibility of decomposing a model
into fast and slow modes.
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Global weak solution for kinetic models of active swimming and passive
suspensions

Xiuqing Chen
Beijing Univ of Posts and Telecommunications

tsinghuacxq@yahoo.com.cn

Bacterium swimming, acting as a force dipole, in fluid is modeled by a coupled Fokker-Planck equation and
incompressible (Navier-)Stokes equation. According to the mechanism for swimming, a bacterium can be
classified into pusher and puller. The local flow generated by the pusher outward force dipole increases the local
straining flow, and hence reduces the effective viscosity and enhance flow-mixture. Therefore, a kind of instability
appears for pusher swimming, which has been extensively studied numerically in physics literature. This
instability can be explained by the fact that there is no entropy-dissipation relation for the pusher suspensions of
coupled Fokker-Planck-(Navier-)Stokes system. Nonetheless, with some careful estimates, we are able to control
the entropy and obtain the existence of global weak entropy solution for both pusher and puller systems.

Polymer suspensions is commonly modeled by suspension of extensible rods. There exists a spring force
resisting to the rod extension. It is well known for this system that there is a relative entropy-dissipation
relation with maxwellian weight. The main difficult of establishing global weak solution is the weak compactness
of stress tensor exerted by the rod particles on the fluid. We will present a compactness embedding theorem

H1
M (Rd) ↪→ ↪→L2

M(1+|n|2)(Rd)
(
M = Ce−U , U is the spring potential

)
,

provided that the spring potential is super-linear at far field. This compactness embedding theorem enables
us to establish the existence of global weak solution to the coupled Fokker-Planck-(Navier-)Stokes equations
for polymers. We will also prove that this compactness embedding theorem does not hold for linear spring
potential, which indicating that the super-linear condition is sharp.
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An important physical model describing the dynamics of ionized plasmas in the collisional kinetic theory is the
Vlasov-Poisson-Boltzmann system for which the plasma responds strongly to the self-consistent electrostatic
force. This talk is concerned with the global close-to-equilibrium dynamics of kinetic plasmas in the whole
space. We establish the global existence and optimal convergence rates of solutions near a global Maxwellian to
the Cauchy problem on the Vlasov-Poisson-Boltzmann system for angular cutoff potentials with −2 ≤ γ ≤ 1.
The main idea is to introduce a time dependent weight function in the velocity variable to produce a new
dissipative mechanism so as to capture the kinetic singularity of the cross-section at both zero and infinity
relative velocities. The approach that we have developed can be applied to several other physical situations
such as the Landau collision for the Coulomb potential, the Boltzmann collision without angular cutoff, and
even the appearance of the coupled Maxwell equations through the Lorentz force.
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On the asymptotics of solutions to resonator equations

Buğra Kabil
Institut für Angewandte Analysis und numerische Simulation,

University of Stuttgart
Bugra.Kabil@mathematik.uni-stuttgart.de

We consider a system of micro-beam resonators within the thermoelastic theory of Lord and Shulman [4]. It is
a particular case of a thermoelastic system given by a coupling of a plate equation to a hyperbolic heat equation
arising from Cattaneo’s law of heat conduction. Micro-resonators have high sensitivity at room temperature.
Thermoelastic damping is one of the reasons for the dissipation or loss of energy from the system to its sur-
roundings, see [7, 1, 2]. We model the problem of thermoelastic damping in micro-resonators by coupling the
plate equation to a modified heat equation with one relaxation parameter proposed by Lord and Shulman.

The system of equations reads as

a∆2u+∆θ + utt = H (x, t) ∈ Rn × (0,∞),

∆θ −mθ + d∆ût = cθ̂t +G (x, t) ∈ Rn × (0,∞),

where f̂ = f + τft. The initial conditions are given by

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x).

The constant τ > 0 represents the relaxation parameter. We assume first that a, d and c are positive constants.
The constant m plays an important role and it is assumed to be non-negative. The term −mθ can be seen as
a physical damping. H and G correspond to external forces and heat supply.

The system in a bounded domain B ⊂ Rn was partly considered in [5, 6]. It was shown that the associated
semigroup for τ > 0 is not exponentially stable. We introduce in the first equation an additional term, called
damping, to assure exponential stability. The first equation of the damped system has the form

a∆2u+∆θ + utt + γut = 0 (x, t) ∈ B × (0,∞),

where γ > 0 is a damping factor. The natural energy is given by

E(t) =

∫

B

(dû2
t + ad|∆û|2 + cθ̂2 + τ(|∇θ|2 +mθ2))dB.
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Using a suitable Lyapunov functional, we can show that the energy of the damped system is exponentially
stable.

We consider the resonator equations in the whole space which have not been studied in the literature before.
We want to study the asymptotic behaviour of the solutions to the Cauchy problem. Our aim is to determine
for different values of m the decay rates for t → ∞. We will see that the absence of the term −mθ will change
the behaviour of the asymptotics. Using Fourier transform we get a system of ordinary differential equations.
The solution of this system is explicitly given. Now one can determine L1-L∞ estimates for the solutions. Using
interpolation techniques we obtain the following result for suitable constants p, q and Np > (1− 2/q)(3n+ 3).

Theorem 1. Let m 3= 0. Then there is a constant c(n, q) > 0, ∀V (0) ∈ WNp,p(Rn), ∀t ≥ 0:

||Vt(t)||q % c(1 + t)−
n
4 (1− 2

q )||V (0)||Np,p,

where V (t) = (û(t), ût(t), θ(t), θt(t)).
Letting m = 0, we observe that the homogenized system can be rewritten as

a∆2u+∆θ + utt = 0,

cθt +∇′q − d∆ut = 0,

τqt + q +∇θ = 0,

where q is the heat flux. Analogously, we can study the asymptotics of this system. As mentioned before, the
system changes its decay rates for m = 0. We can obtain an estimate for the second time derivative of the
solution. So we have the following theorem for suitable constants p, q and Np > (1− 2/q)(3n+ 5).

Theorem 2. Let m = 0. Then there is a constant c(n, q) > 0, ∀V (0) ∈ WNp,p(Rn), ∀t ≥ 0:

||Vtt(t)||q % c(1 + t)−
n
2 (1− 2

q )||V (0)||Np,p,

where V (t) = (û(t), ût(t), θ(t), θt(t)).
We remark that one can get estimates for the vector V (t) by putting some conditions on the space dimension

n. It should be mentioned that the constant m does not play a role in a bounded domain.
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12.6 Session 69 — Room C — Wave Patterns Analysis II

S69 – Wave Patterns Analysis II – Room C, 17.00–17.30

Multi-dimensional rarefaction waves

Denis Serre
ENS, Lyon

denis.serre@ens-lyon.fr

For a self-similar solution to a system of conservation laws, genuine nonlinearity allows the regularity to reduce
to Lipschitz continuity where the type changes. This is well-known in one space dimension, where a constant
state ū bifurcates towards a rarefaction wave at a point x/t that equals an eigenvalue λj(ū). We extend this
observation to several space dimensions. The result generalizes a calculation made by Bae, Chen and Feldman
in their paper about irrotational gas dynamics

Joint work with: Heinrich Freistühler (University of Konstanz, Germany).
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Stability of small shocks associated
with Metivier-convex modes

Heinrich Freistühler
University of Konstanz, Germany

heinrich.freistuehler@uni-konstanz.de

Consider a hyperbolic system
∂tU + ∂x1F1(U) + ∂x2F2(U) = 0 (1)

of (at least two) conservation laws in two space variables and a corresponding piecewise constant Laxian shock
wave

U(x, t) =

{
U−, x1 < 0,

U+, x1 > 0,
(2)

of speed 0. The Kreiss-Majda Lopatinski determinant

∆(τ, ξ) = det(R−
1 (τ, ξ), . . . , R

−
p−1(τ, ξ), τ [U ] + i[F ξ(U)], R+

p+1(τ, ξ), . . . , R
+
n (τ, ξ))

of (2) is defined on
S ≡ {(τ, ξ) ∈ C× R : Re τ ≥ 0, |τ |2 + ξ2 = 1},

with F ξ ≡ ξF2 and
{R−

1 (τ, ξ), . . . , R
−
p−1(τ, ξ)}, {R+

p+1(τ, ξ), . . . , R
+
n (τ, ξ)}

continuous bases for the (extensions to S of) the stable/unstable spaces E−(τ, ξ), E+(τ, ξ) of

A(τ, ξ) ≡ (τI + iDF ξ(U∓))(DF1(U
∓))−1.

We call a simple mode Λ = Λ(U,N, ξ) of a system (1) Métivier convex if
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(a) DUΛ(U,N, 0) /∈ left-Im(D(FN)(U)− Λ(U,N, 0)I) (“genuine nonlinearity”) and

(b) D2
ξΛ(U,N, 0) > 0.

It has been proved in [1] (and reproved in [2]) that sufficiently small Laxian shock waves associated with a
Métivier convex mode satisfy the uniform Kreiss-Lopatinski condition,

∆(τ, ξ) 3= 0 for all (τ, ξ) ∈ S, if p = 1 or p = n. (3)

Among other things, this talk shows that there exist symmetric constant-multiplicity hyperbolic systems of
conservation laws with a Métivier convex mode such that, in contrast to the above, for any sufficiently small
shock wave associated with that mode,

∆(iσ, ξ) = 0 for some σ, ξ ∈ R \ {0} with σ2 + ξ2 = 1. (4)

This unexpected finding has interesting consequences.
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The onset of instability for quasi-linear systems

Benjamin Texier
Université Paris-Diderot et Ecole Normale Supérieure, Paris

texier@math.jussieu.fr

A recent “Lax-Mizohata” theorem of Guy Métivier [1] states that for quasi-linear first-order systems, the
Cauchy problem is well-posed only if the principal symbol is hyperbolic. For complex scalar equations, Lerner
Morimoto and Xu considered in [2] the limiting case in which the system is initally hyperbolic, but as time
increases hyperbolicity is lost.

I will discuss joint results with Nicolas Lerner, Toan Nguyen, Lu Yong and Marta Strani, that extend the
results of [1] and [2] in various directions. Our approach consists in detecting instabilities from growth properties
of the micro-local linear flow. Examples based on the Burgers, Van der Waals, and Klein-Gordon-Zakharov
equations illustrate the results.
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[3] N. Lerner, T. Nguyen, B. Texier, Loss of hyperbolicity and ill-posedness for quasi-linear first-order systems,
preprint, 2012.
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(La Sapienza)
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Stability of supersonic flow onto a wedge with the attached weak shock under the
fulfillment of the weak Lopatinski condition

Dmitry Tkachev
Sobolev Institute of Mathematics, Novosibirsk State University, Russia

tkachev@math.nsc.ru

As is well known, the classical problem of supersonic stationary inviscid and non-heatconducting gas flow onto
a planar infinite wedge (when the vertex angle σ is smaller than a limiting value σmax) theoretically has two
solutions. The first solution corresponds to the case of a strong shock (the components of the velocity vector
U = (u0, v0) behind the shock wave satisfy the inequality u2

0 + v20 < c20, where c0 is the sound speed), and the
second one correspond to the case of a weak shock when u2

0 + v20 > c20 [1].
Paradoxically, but in practice, in physical and numerical experiments, only one of two theoretically admissible

solutions is realized. This is the case of a weak shock. R. Courant and K.O. Friedrichs set up the hypothesis
that the flow with a weak shock is stable (by Lyapunov) whereas the flow with a strong shock is unstable. This
is a lead for understanding this phenomenon.

On the linear level the Courant-Friedrich’s hypothesis was justified in [2-4] for the case of a strong shock
and in [5,6] for the case of a strong shock. Moreover, in [2-4] the instability nature when the wave comes to
the wedge’s vertex was clarified. In [5,6], under the assumption that the uniform Lopatinski condition holds
an exact solution of the problem for the case of compactly supported initial data was found and the proof that
this solution becomes stationary for a finite time (!) was given.

In our report we consider the linearized problem for the case of a weak shock but, unlike the study in [5,6],
we assume that on the shock front the Lopatinski condition is satisfied only in a weak sense, i.e., the uniform
Lopatinski condition is violated. Such a case takes place, for example, for a normal gas under certain assumptions
on the equation of state [7]. We find a representation for the classical solution. Unlike the case of the uniform
Lopatinski condition in [5,6], there appear additional disturbances (plane waves) in this representation. It turns
out that the Courant-Friedrichs hypothesis in this situation is true as well, and the analysis of the obtained
solution enables one to conclude that for compactly supported initial data the solution of the linear problem
becomes stationary for a finite time.

This work was supported by RFBR (Russian Foundation for Basic Research) grants No. 10-01-00320-a and
11-08-00286-a.
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Glancing weak Mach reflection

Allen M. Tesdall
City University of New York, College of Staten Island

allen.tesdall@csi.cuny.edu

We study the glancing limit of weak Mach reflection, in which the wedge angle approaches zero as the Mach
number is held fixed. Lighthill showed using linearized theory that the strength of the reflected shock approaches
zero at the triple point in glancing reflections. Therefore, to understand the nonlinear structure of the solution
near the triple point in a glancing reflection, one needs to understand how the reflected shock diffracts nonlinearly
into the Mach shock as its strength approaches zero. To this end, we formulate a half-space initial boundary
value problem for the unsteady transonic small disturbance equations in y > 0. In this problem, the strong
shock is approximated by a “soft” boundary y = 0 on which the pressure is constant. We solve this IBVP
numerically using high resolution methods. The numerical solutions show a complex reflection pattern similar
to the one that occurs in the Guderley Mach reflection of weak shocks. This is joint work with John Hunter.
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12.7 Session 70 — Room E — Conservation Laws and Applications II

S70 – Conservation Laws and Applications II – Room E, 17.00–17.30

Traveling wave solutions in scalar conservation laws with anomalous diffusion

Franz Achleitner
Vienna University of Technology
franz.achleitner@tuwien.ac.at

We consider scalar conservation laws with anomalous diffusion,

∂tu+ ∂xf(u) = ∂xDαu , (t, x) ∈ R+ × R , (1)

for a density u : R+ × R → R, (t, x) /→ u(t, x), a smooth flux function f(u) and a non-local operator

(Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy (2)

with 0 < α < 1.
We prove the global solvability for the Cauchy problem to (1) in L∞, i.e. the existence of a unique mild

solution for the Cauchy problem with essentially bounded initial datum, by following the analysis of Droniou,
Gallouet and Vovelle [DGV] in case of an anomalous diffusion realized by a fractional Laplacian. The crucial
property is the non-negativity of the semigroup generated by ∂xDα, which is a consequence of its interpretation
as an infinitesimal generator of an (α+1)-stable Levy process [S], and allows to prove a maximum principle for
solutions of the Cauchy problem.

To analyze the existence of traveling wave solutions connecting different far-field values, we work with the
original representation (2) of Dα, and obtain the traveling wave equation associated to (1) in form of a nonlinear
Volterra integral equation. Assuming (even a bit less than) convexity of the flux function and that the solutions
of the associated linear Volterra integral equation form a one-dimensional subspace of H2(R−), we can show
the existence and uniqueness of monotone solutions satisfying the entropy condition for classical shock waves
of the underlying inviscid conservation law. This requires to extend the well known results for the existence of
viscous shock profiles, which solve (local) ordinary differential equations.

Moreover, we prove the dynamic nonlinear stability of the traveling waves under small perturbations, simi-
larly to the case of the standard diffusive regularization, by constructing a Lyapunov functional.

For more details, we refer to our article [AHS].

Finally, we will provide an example of a single layer shallow water flow, where the pressure is governed by
a nonlinear conservation law with the aforementioned nonlocal diffusion term and additional dispersion term
[KCEG], and report on our recent progress in the analysis of smooth shock profiles.
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On the Doi model for the suspensions of rod-like molecules in compressible fluids

Hantaek Bae
CSCAMM, University of Maryland

hbae@cscamm.umd.edu

In this talk, we introduce a new model, compressible Doi model for suspensions of rod-like molecules in a dilute
regime. This model is 5-dimensional (three-dimensions in physical space and two degrees of freedom on the
sphere) and it describes the interaction between

• the orientation of rod-like molecules at the microscopic scale and

• the macroscopic properties of the fluid in which these molecules are contained.

The aim of this talk is to present the following subjects:

• new set of equations,

• definition of weak solution and main result,

• construction of approximate sequence of solutions.

This is a joint work with K. Trivisa (University of Maryland).
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The Cauchy Problem for a conservation law with a multiplicative stochastic
perturbation

Caroline Bauzet
UMR-CNRS 5142, IPRA BP 1155, 63013 Pau Cedex France

caroline.bauzet@etud.univ-pau.fr

We are interested in the formal non linear conservation law with a multiplicative stochastic perturbation of
type:

du− div(0f(u))dt = h(u)dw in Ω× Rd×]0, T [, (1)

with an initial condition u0 ∈ L2(Rd) and d & 1. We consider a positive number T and W = {wt,Ft; 0 ≤ t ≤ T}
denotes a standard adapted one-dimensional continuous Brownian motion, defined one the classical Wiener space
(Ω,F , P ). Let us assume that

H1: 0f = (f1, .., fd) : R → Rd is a Lipschitz-continuous function and fi(0) = 0, ∀i = 1, ..., d.

H2: h : R → R is a Lipschitz continuous function with h(0) = 0.
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We propose to prove a result of existence and uniqueness of the stochastic entropy solution for (1) in the set of
predictable processes N 2

w(0, T, L
2(Rd)) [1]. A method of artificial viscosity is proposed to prove the existence of

a solution. First we are interested in the parabolic problem :

duε − [ε∆uε − div(0f(uε))]dt = h(uε)dw in Ω× Rd×]0, T [,

with uε
0 ∈ D(Rd), studied in [2]. Appliying the It formula [1] to the process uε we obtain a viscous entropic

formulation, and passing to the limit on the parameter ε, we get an entropic formulation for (1). The compactness
properties used are based on the theory of Young measures and on measure-valued solutions. An appropriate
adaptation of Kruzhkov’s doubling variables technique is proposed to prove the uniqueness of the measure-
valued entropy solution. Then standard arguments allow us to deduce existence (and uniqueness) of stochastic
weak entropy solutions.
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Entropy decreasing in resonant contact discontinuities

Nicolas Seguin
UPMC Univ Paris 06 & CNRS,

UMR 7598, Laboratoire J.-L. Lions, F-75005, Paris, France
nicolas.seguin@upmc.fr

We address the problem of the analysis and of the numerical approximation of resonant systems in dif-
ferent applications: trafic flows, fluid-particle interaction, two-phase flows, shalow water equations, coupling
problems... By “resonant”, we mean that the matrix A(U) ∈ RN×N in a quasilinear system of the form

∂tU +A(U)∂xU = 0 (1)

is diagonalizable in RN for all U ∈ Ω ⊂ RN (Ω being the set of admissible states) except in a manifold Ωr ⊂ Ω,
for which A(Ur), Ur ∈ Ωr, still admits real eigenvalues but it is no longer diagonalizable in RN . This implies
that the multiplicity of at least one eigenvalue of A(Ur) is greater than one. We focus more precisely on the
case where it corresponds to the superposition of a linearly degenarate field with a genuinely nonlinear field.

A general form for such an issue is
{
∂tUl + ∂xFl(Ul) = 0, t > 0, x < 0,

∂tUr + ∂xFr(Ur) = 0, t > 0, x > 0,
(2)

where Fl, Fr are two classical nonlinear C2(RN ;RN ) fluxes and we supplement systems (2) by coupling conditions,
which can be written in the abstract form

(Ul(t, 0
−), Ur(t, 0

+)) ∈ G (3)
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where G ∈ R×R is called the germ and denotes the compatibility conditions we want to impose to connect the
two half problems.

According to the problem we are faced with, the germ G (and of course the fluxes Fl, Fr) may be very
different and this leads to different theoretical problems and their numerical approximation has to be adapted.
Nevertheless, in each cases, the eigenvalues of the Jacobian matrix F ′

l (U), F ′
r(U) can vanish, leading to a resonant

problem.
We present in the scalar case two cases where the analysis is fully achieved, respectively in [1] and [2]: the

first one corresponds to the account for a less permeable slice in a porous medium, giving

Fl(U) = Fr(U) = U(1− U) and G = {(U, V ) ∈ R2, Fl(U) = Fr(V ) ≤ F̄}

where F̄ is computed from the permeability of the slice and U is the saturation, while the second case comes
from the modelling of the friction due to a pointwise grid in a pipe: Fl(U) = Fr(U) = U2/2 and G is defined
through the limit of

∂tU + ∂x(U
2/2) = −λUρε(x)

where λ is a positive friction coefficient and ρε(x) = ρ(x/ε)/ε, ρ being a classical approximation of the unit.
In the case of systems, typical examples are the gas dynamics equations in a discontinuous duct, the shallow

water equations with a discontinuous bottom and two-phase flows governed by the Baer-Nunziato model [3].
Following [4] and [5], we also provide a careful theoretical and numerical study of such resonant systems. On
may also extend the scalar model of pointwise friction to the Euler equations.

In all these cases, we will show that the solution is discontinuous at the interface {x = 0} and that the
entropy may (and actually has to) decrease through it for some resonant solutions. It will be justified by
regularization effects, leading to well-posedness results and convergence of adapted finite volume schemes.
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S70 – Conservation Laws and Applications II – Room E, 19.00–19.30

Spectral Stability of Small-Amplitude Traveling Waves via Geometric Singular
Perturbation Theory

Johannes Wächtler
Universität Konstanz

johannes.waechtler@uni-konstanz.de

We study the spectral stability of small-amplitude traveling waves in two different systems: First, in a system
of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly
hyperbolic system of viscous conservation laws where the k-th characteristic family is not genuinely nonlinear.
In either case, there exist families φε of small-amplitude traveling waves. The eigenvalue problem associated
with the linearization at φε is a system of ordinary differential equations depending on two parameters, the
amplitude ε and the spectral value κ. Suitably scaled, the system reveals a slow-fast structure. Using methods
from geometric singular perturbation theory, this will be exploited to thoroughly describe the dynamics of the
eigenvalue problem in the zero-amplitude limit. We will prove that the eigenvalue problem converges, in the
limit ε → 0, to the well-understood eigenvalue problem associated with a traveling wave φ0 in a certain scalar
equation. The profiles φε then inherit the spectral stability from the respective limit profile φ0.
Following the line of thought of Freistühler and Szmolyan [1], the proofs rely on concepts from dynamical system
theory, most notably on invariant manifold theory and geometric singular perturbation theory.
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The Riemann problem for three-phase flow
with quadratic permeabilities
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University of Wyoming, USA
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We focus on a particular system of two conservation laws which models immiscible flow in porous media
relevant for petroleum engineering. The Riemann solutions are found for a range of initial conditions important
in applications, representing the injection of two fluids (water, gas) into a horizontal reservoir containing a third
fluid (oil) to be displaced.

Despite loss of strict hyperbolicity, the solution for each data exists and is unique. Also, it depends L1

continuously on the Riemann data. Such solutions always display a lead shock involving one of the injected
fluids and the fluid already present. There is a threshold solution separating solutions according to which of
the injected fluids is present in the lead shock.

In this particular model the permeability of each of the three phases depends quadratically on its own
saturation. This simplification is conducive to explicit calculations, allowing the proof of many facts needed
for establishing the structure of the solution, its existence and uniqueness. This particularization, however,
preserves all essential topological features of the Riemann solution for a large class of permeability models
typically used in petroleum engineering applications, which is described in another work [1].
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Numerical simulation of wave propagation in three-phase flows in porous media
with spatially varying flux functions

Eduardo Abreu
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Department of Applied Mathematics
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Distinct hyperbolic-parabolic models have been proposed for three-phase immiscible displacement problems
in porous media (e.g., [3,4,5,7,8] and references cited therein), such as the scalar case of immiscible two-phase
flow (the classical Buckley-Leverett waterflood problem) and the system case to simultaneous immiscible three-
phase flow (the classical oil/water/gas flow problem).

We describe a computational method [1] intended for simulating three-phase immiscible incompressible flow
system in porous medium in two space dimensions, which is an extension of the scheme of [2] to a two-dimensional
case with gravity and spatially varying flux functions:

∂

∂t
[φ(x)S] +∇ · [vF(S) + k(x)H(S)] = ∇ · [ε k(x)D(S)∇S], (1)

x ∈ Ω ⊂ >2, t ≥ 0, ε > 0, where F(S) = [fw, fg], and H(S) = [hw, hg],, are nonlinear flux quantities with
i = w, g, fi = fi(S), hi = hi(S), S = [Sw, Sg], and S(x, t) ∈ T ⊂ >2. The vector quantity v = (vx, vy) is the
total velocity (associated with an elliptic boundary value problem for the incompressible three-phase problem
at hand). The quantities φ(x) and k(x) are properties of the rock, porosity and permeability, respectively.
Thus, the porous medium may be heterogeneous. For certain models of three-phase flow of type (1) used in
mathematics and widely used in applications [3,4,7,8] is that the 2× 2 system of first-order hyperbolic partial
differential equations for Sw (water phase), Sw (gas phase) and So = 1 − Sw − Sg (oil phase), which results
when the diffusive (parabolic) matrix D(S) is neglected [3] is that it fails to be strictly hyperbolic somewhere
in the state space T = {(Sw, Sg) | 0 ≤ Si ≤ 1; Sw + Sg + So = 1}; i.e., the characteristic speeds coincide, or
resonate [3,4,8].

Our new computational method [1] is an operator-splitting procedure for decoupling the nonlinear hyperbolic-
parabolic three-phase flow equations (1) with mixed discretization methods, leading to purely hyperbolic,
parabolic and elliptic subproblems. The computational procedure in [2,5] has been used to numerically in-
vestigate the existence of nonclassical waves in heterogeneous porous media of a simplified three-phase flow
equations without gravity. Following [2,5], our hyperbolic solver is also based on the central scheme introduced
by E. Tadmor [6]. Specifically, the resulting numerical formulation can handle the computation of spatially
varying flux functions and the variable porosity in the transport system (1). We use locally conservative mixed
finite elements to handle the associated parabolic and elliptic subproblems [1,2,5].

The numerical simulation of the differential equations (1) corroborates that the heterogeneity has a distinct
effect in the simulation of wave propagation in porous media. In particular, the numerical simulations were able
to qualitatively reproduce semi-analytical results for three-phase flows [7,8] in homogeneous media. Although
not exhaustive, our numerical experiments [1] show some evidence of wave with nonclassical structure for the
simulation of two-dimensional equations of three-phase flow (1) taking into account gravity and spatially varying
flux functions.
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Adaptive two-three layer modelling of stratified flows

Sebastian Noelle
RWTH Aachen University
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We consider stratified shallow water flow, for which layers of different density can be identified. Such flow occurs
in oceans at sea gates or at river mouths, where water of different salinity and temperature and thus different
density flows together.

Balance laws such as the shallow water equations present notorious difficulties due to a large variety of source
terms and their well-balancing, and because of wet/dry fronts. For the two-layer equations, an additional
challenge is presented by non-conservative products, which require a sophisticated analytical and numerical
framework (see Dal Maso, Murat and LeFloch, Castro, Parés and collaborators [1] as well as work by Abgrall
and Karni, Bouchut and Morales, Kurganov and others). While there is a lively debate on the issue of non-
conservative products, we consider this issue to be settled for the sake of this presentation.

Here we focus on another difficulty, the possible loss of hyperbolicity due to moderate or large shear velocities
between the layers. For flows which are not depth-averaged, this corresponds to the development of a Kelvin-
Helmholtz instability and a mixing layer. We will discuss two approaches to overcome the breakdown of the
two-layer model. Both involve the introduction of viscosity, but in rather different ways.

The first approach, due to Castro, Fernández-Nieto, González-Vida, and Parés [2] adds just enough viscosity
to the algorithm to move the numerical solution out of the elliptic region up to the boundary of the hyperbolic
region. The second approach, which we began to study in [3], introduces more vertical structure into the solution:
first, a third layer is introduced locally before the hyperbolicity of the two-layer equation breaks down. This layer
realizes an instantaneous mixing, and it is removed when (and where) the shear has decreased and the two-layer
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model would be hyperbolic again. These steps are highly nontrivial, because they require an understanding
of the eigenvalues of the 6x6 three-layer system near the degenerate points where the eigenvalues coincide, see
[3,4]. In his dissertation [4], Frings developed a finite volume scheme to test this strategy. Interestingly, this
approach was not sufficient to maintain hyperbolicity of the adaptive 2/3-layer model.

In order to stabilize the 2/3 layer model further, Frings introduced sublayers within each of the two re-
spectively three macro-layers. Similar to a model proposed earlier by Audusse [5], there is interlayer friction
between the sublayers. But in the present work, the sublayer equations are coupled more weakly. This avoids
the high-dimensional eigenspaces of [5]. Currently, we are also extending the direct approach of [2] to stabilize
the 2/3-layer model.

We prove that this concept is robust by computing several underwater dambreak flows, and comparing them
with laboratory experiments.
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Stone-Marchesin Model Equations of Three-Phase Flow in Oil Reservoir
Simulation

Fumioki Asakura
Department of Asset Management, Osaka Electro-Communication Univ.
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We are concerned with the Cauchy problem for a system of conservation laws






∂u

∂t
+

∂

∂x

[
αu2

αu2 + βv2 + γ(1− u− v)2

]
= 0,

∂v

∂t
+

∂

∂x

[
βv2

αu2 + βv2 + γ(1− u− v)2

]
= 0

where α,β, γ are positive constants and (u, v) ∈ Ω : 0 < u+ v < 1, u, v > 0.
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This is a non-strictly hyperbolic system: at U∗ = γ
βγ+γα+αβ

t(β,α), the characteristic speeds coincide and

the linearization is a symmetric hyperbolic system. [2] is a good over-view and the approximation around U∗

is fully studied in [4].
We study global shock structures of solutions. The Hugoniot locus of U0 is a plane cubic curve and the

2-phase like flow curves ([3]) are straight lines.
Theorem 1. Suppose that the following (all) three inequalities hold

αβ < βγ + γα, βγ < γα+ αβ, γα < αβ + βγ.

Then on each 2-phase like flow curve, there exist undercompressive shock waves connecting two states on the
curve.
Theorem 2. Suppose that one of the following three inequalities holds

αβ > βγ + γα, βγ > γα+ αβ, γα > αβ + βγ.

Then on one of the three 2-phase like flow curve, there exist overcompressive shock waves connecting two states
on the curve.

If U0 is on a 2-phase like flow curve L, the Hugoniot curve is a hyperbola plus L and there is a secondary
bifurcation point. We get a precise condition so that two states can be connected by an under or overcompressive
shock wave.
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Exact solutions to ideal hydrodynamics of inelastic gases: global existence and
singularities

Olga S. Rozanova
Moscow State University
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The motion of the dilute gas where the characteristic hydrodynamic length scale of the flow is sufficiently large
and the viscous and heat conduction terms can be neglected is governed by the equations of ideal granular
hydrodynamics [1], [2]. This system is given in R× Rn, n ≥ 1, and has the following form:

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u) = −∇xp,

∂tT + (u,∇xT ) + (γ − 1)Tdivxu = −ΛρT 3/2,
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where ρ is the gas density, u = (u1, ..., un) is the velocity, T is the temperature, p = ρT is the pressure, the
constants γ and Λ > 0 are chosen for physical reasons. The only difference between the system above and the
standard ideal gas dynamic equations (where the elastic colliding of particles is supposed) is the presence of the
inelastic energy loss term −ΛρT 3/2.

First we prove that the solutions with conserved mass, total energy and finite momentum of inertia generically
lose their initial smoothness within a finite time in any space dimension n and 1 < γ ≤ 1 + 2

n . In the one-
dimensional case we introduce a solution depending only on the spatial coordinate outside of a ball containing
the origin and prove that this solution under rather general assumptions on initial data cannot be global in
time too [3].

Further, we construct a large family of exact solutions to the system in several dimensions for arbitrary γ.
In dependence on initial conditions these solutions can keep smoothness for all t > 0 or develop singularities.
In the latter case we show that the singularity in the component of density is integrable for a spatial dimension
greater than one. A special attention we pay to 2D case, where the singularity can be formed either in a point or
along a line. We show that an initial vorticity prevents the formation of singularity. We consider a special case
of the Chaplygin gas (γ = −1), where a special solution satisfies a couple of equations and therefore in 1D case
the system can be written in the Riemann invariant and can be treated in a standard way (the criterion of the
singularity formation can be found and the Riemann problem can be solved). We also construct an exact axially
symmetric solution with separable time and space variables having a strong singularity in the density component
beginning from the initial moment of time, whereas other components of solution are initially continuous.
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Monotone numerical approximations for optimal control of hybrid systems

Roberto Ferretti
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Hybrid systems are a general framework which can model a large class of control systems arising whenever a
collection of continuous- and discrete-time dynamics are put together in a single model [1, 2, 3]. We consider
here hybrid systems in the form:

Ẋ(t) = f(X(t), q(t), u(t)),

with an initial condition X(0) = x, where X ∈ Rd is the continuous state and q ∈ I is the discrete one (this
meaning that by changing q the system switches between different dynamics). The control set U is the set of
measurable function u : (0,∞) → U , where U ∈ Rm is compact.

The trajectory undergoes discrete jump when it hits two predefined sets A (the autonomous jump set) and
C (the controlled jump set) of Rd. More precisely, at each commutation the trajectory can jump to a predefined
set D and a possibly different discrete state q′ ∈ I, and
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• on hitting A, the jump is given by a prescribed transition map g : Rd × A × V → D × I, where V is the
discrete control set. We denote by τi an arrival time to A, and by (X(τ−i ), q(τ−i )) the point before a jump,
while the state after the jump will be denoted by (X(τ+i ), q(τ+i )) = g(X(τ−i ), w);

• when the trajectory evolves in the set C, the controller can choose either to jump or not. By ξi we denote
a switching time. The controlled jump destination of (X(ξ−i ), q(ξ−i )) is (X(ξ+i ), q(ξ

+
i )) ∈ D × I.

Classical assumptions will be made on the sets A,C,D and on the functions f and g. For every strategy
θ := (u(·), v(·), (ξi), (τk)), we associate the cost defined by:

J(x, θ) :=

∫ +∞

0
:(X(t), q(t), u(t))e−λt dt+

∞∑

k=0

Ca(X(τ−k ), v)e−λτk +

+
∞∑

i=0

Cc(X(ξ−i ), ξ−i )e−λξi (1)

where λ is the discount factor, : : Ω× I× U → R+ is the runing cost, Ca : A× I× V → R+ is the autonomous
jump cost and Cc : C × I×D → R+ is the controlled jump cost. The value function V is then defined as:

V (x, q) := inf
θ∈U×V×[0,∞)×D

J(x, θ). (2)

The functions :, Cc and Ca are assumed to be nonnegative and Lipschitz continuous. Moreover, Ca(x, v) and
Cc(x, x′) are uniformly bounded from below by some C ′ > 0. By using viscosity arguments as in [1], it can be
proved that V is the unique bounded continuous solution of the quasi-variational inequality:






V (x, q)−MV (x, q) = 0 x ∈ A,

max(V (x, q)−NV (x, q),λV (x, q) +H(x, q,DxV (x, q)) = 0 x ∈ C,

λV (x, q) +H(x,DxV (x, q)) = 0 else,

(3)

where
H(x, q, p) := sup

u∈U
{−:(x, q, u)− f(x, q, u) · p},

Mφ(x, q) := inf
v∈V

{φ(g(x, q, v)) + Ca(x, v) (x ∈ A),

Nφ(x, q) := inf
x′∈D,q′∈I

{φ(x′, q′) + Cc(x, x
′)} (x ∈ C).

We consider monotone schemes approximating (3) in the fixed point form:

V h(x, q) = Th(x, q, V h) =






MhV h(x, q) x ∈ A

min
{
NhV h(x, q), Sh(x, q, V h)

}
x ∈ C

Sh(x, q, V h) else,

(4)

where V h is the numerical approximation of the value function V , indexed by the discretization parameter
h. We shall first discuss the convergence issues related to this class of approximation schemes, and discuss
the reconstruction of optimal trajectories for the underlying control problem. Moreover, we will provide some
numerical examples to show the efficiency of the proposed method.

References

[1] G. Barles, S. Dharmatti and M. Ramaswamy, Unbounded viscosity solutions of hybrid control systems,
ESAIM:COCV, 16 (2010), pp. 176–193

[2] M.S. Branicky, V. Borkar and S. Mitter, A unified framework for hybrid control problem, IEEE Transac-
tions on automated control, 43 (1998), pp. 31–45

[3] S. Dharmatti and M. Ramaswamy, Hybrid control system and viscosity solutions, SIAM J. on Contol and
Optimization, 44 (2005), pp. 1259–1288

Session 72 — Room F — Numerical Methods for Hamilton-Jacobi Equations



HYP2012 — Book of Abstracts 239

[4] R. Ferretti and H. Zidani, Numerical Hamilton–Jacobi approach for solving some optimal control problems
governed by hybrid systems, preprint (2012)

Joint work with: Hasnaa Zidani (ENSTA Paristech), Jun-Yi Zhao (ENSTA Paristech)

∗ ∗ ∗

S72 – Numerical Methods for Hamilton-Jacobi Equations – Room F, 17.30–18.00

Semi-Lagrangian discontinuous Galerkin schemes for first and second order
partial differential equations
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In this work [1], we propose explicit, CFL-free, high-order schemes for the approximation of some first and
second order time-dependant partial differential equations. The scheme is based on a weak formulation of a
semi-lagrangian scheme using discontinous Galerkin elements, together with a systematic use of the splitting
strategy. It follows the idea of the recent works of Qiu and Shu [2] and of Crouseilles, Mehrenberger and Vecil
[3] for first order advection equation, based on exact integration and splitting techniques. We prove high order
behavior, stability as well as convergence of our scheme in the case of linear second order PDEs with constant
coefficients, or linear first order PDEs with nonconstant coefficients. The obtention of general high-order schemes
for nonconstant coefficients is the subject of ongoing works that will be discussed, as well as some extentions
to nonlinear obstacle problems [4,5]. The schemes are illustrated on several numerical examples, including the
Black and Scholes PDE in finance.
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Semi-Lagrangian schemes for linear and fully non-linear Hamilton-Jacobi-Bellman
equations

Kristian Debrabant
Department of Mathematics and Computer Science, University of Southern Denmark
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In this talk we consider the numerical solution of diffusion equations of Hamilton-Jacobi-Bellman type

ut − inf
α∈A

{
Lα[u](t, x) + cα(t, x)u+ fα(t, x)

}
= 0 in (0, T ]× RN ,

u(0, x) = g(x) in RN ,

where

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x).

The solution of such problems can be interpreted as value function of a stochastic control problem. We introduce
a class of monotone approximation schemes relying on monotone interpolation. Besides providing a unifying
framework for several known first order accurate schemes [2,3,5], the presented class of schemes includes new
methods that are second order accurate in space and converge for essentially monotone solutions. Some stability
and convergence results are given and the method is applied to a super-replication problem from finance [1].
The results are mainly taken from paper [4].
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An approximation scheme for an Eikonal Equation with discontinuous coefficient

Adriano Festa
Imperial College, London
a.festa@imperial.ac.uk

We will present a numerical scheme for a class of non classical Hamilton-Jacobi equations where we can have
discontinuous viscosity solutions, following the definition of Ishii [7]. In this case, through a particular condition
on the discontinuities [4, 10] we can preserve a comparison principle for the solutions and so uniqueness. We
will introduce and study a semi Lagrangian numerical scheme and also deriving some error bounds which will
be, because of the discontinuity on the viscosity solutions, in L1 norm. We will finally present some applicative
situations where we have good performances of our methods, in particular Shape-from-Shading and a optimal
navigation problem.
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S72 – Numerical Methods for Hamilton-Jacobi Equations – Room F, 19.00–19.30

Approximation of the Effective Hamiltonian Through a Degenerate Elliptic
Problem

Martin Nolte
University of Freiburg

nolte@mathematik.uni-freiburg.de

Given a strongly convex Hamiltonian H ∈ C2(Td,Rd), H = H(x, p), we seek a numerical approximation of its
effective Hamiltonian H̄ given by

H̄(P ) = inf
u∈C∞(Td)

max
x∈Td

H(x, P +∇u).

In [1] it was shown that H̄(P ) can be approximated by

H̄k(P ) := inf
u∈C∞(Td)

1

k
ln

[∫

Td

ekH(x,P+∇u)) dx

]
k→∞−→ H̄(P ),

leading us to the nonlinear elliptic Euler-Lagrange equation

∇ ·
(
ekH(x,P+∇uk)Hp(x, P +∇uk)

)
= 0 in Td.

In [3], a finite difference discretization for this Euler-Lagrange equation is applied to simple Hamitlonians
of the form H(x, p) = 1

2 |p|
2 + E(x). We extend this scheme to general strongly convex C2-Hamiltonians.

Unfortunatly, this scheme is unstable unless k ≤ C(∆x). Adding numerical viscosity, we stabilize the scheme
and pass to the limit k → ∞ in the discretization. This results in a numerical scheme for the equation

−Hp(x,∇u)HT
p (x,∇u) : ∇2u = HT

x (x,∇u)Hp(x,∇u) in Td.

As shown in [1], uk → u ∈ C(Td) and u is a viscosity solution of this equation.
Numerical experiments indicate that it is possible to recover H̄(P ) from u through the formula

H̄(P ) = sup
x∈Td

H(x,∇u).
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13 Abstracts of posters

13.1 Monday, 14.00–16.35, Via Bassi Rooms, first floor

Global existence and energy decay of solutions for a nondissipative wave equation
with a time varying delay term

Abbes Benaissa
Laboratory of Mathematics, Djillali Liabes University,

P. O. Box 89, Sidi Bel Abbes 22000, ALGERIA.

benaissa−abbes@yahoo.com

We consider the energy decay for nondissipative wave equation in a bounded domain with a time varying delay
term in the internal feedback. We use an approach introduced by Guesmia which leads to decay estimates
(known in the dissipative case) when the integral inequalities method due to Haraux-Komornik [4] cannot be
applied due to the lack of dissipativity. First we study the stability of a nonlinear wave equation of the form

utt(x, t)−∆xu(x, t) + µ1σ(t)ut(x, t) + µ2σ(t)ut(x, t− τ(t)) + θ(t)h(∇xu) = 0

in a bounded domain. We consider the general case with a nonlinear function h satisfying a smallness condition,
and obtain the decay of solutions under a relation between the weight of the delay term in the feedback and
the weight of the term without delay. We impose no control on the sign of the derivative of the energy related
to the above equation.

In the second case we consider the case θ ≡ const and h(∇u) = −∇Φ∇u. We prove an exponential decay
result of the energy without any smallness condition on the function h.
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On the Thermostatted Kinetic Models

Carlo Bianca
Dipartimento di Scienze Matematiche, Politecnico di Torino

carlo.bianca@polito.it
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Different approaches inspired to equilibrium or non equilibrium statistical mechanics have been developed
in an attempt to describe collective behaviors and macroscopic features of complex phenomena in nature and
society as the result of microscopic interactions. Kinetic theory for active particles models have been developed
in space homogeneity for complex systems where macroscopic external effects are neglected [2]. Accordingly the
random interactions among individuals will eventually move the system towards equilibrium. If, on the other
hand, an external force field acts on the system, the applied field does work on the system thereby moving it
away from equilibrium [1]. The excess energy needs to be removed so as to achieve a steady state. A method,
which is common in nonequilibrium molecular dynamics simulations, is the use of deterministic thermostats,
which consists by introducing a damping term into the equations of motion [5].

This talk is concerned with the mathematical modelling of complex systems subjected to external force fields
whose magnitude exerts an action on the particles. A Gaussian isokinetic thermostat is introduced in order
to keep constant the energy of the system. The resulting model is expressed by means of nonlinear hyperbolic
partial integro-differential equations [3]. The global in time existence and uniqueness of the solution to the
relative Cauchy problem is shown for which the density and the energy of the solution are preserved [4].
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Continuum Models of a Limit Order Book

Giancarlo Facchi
The Pennsylvania State University

facchi@math.psu.edu

An external buyer asks for a random amount X > 0 of a certain asset. X is distributed according to a proba-
bility distribution µ on R+. We assume that this external buyer will buy the amount X at the lowest available
price, as long as this price does not exceed a given upper bound.

Different agents are willing to sell various quantities of the asset at different prices, competing against each
other in order to fulfill the random incoming market order. We denote by ui(p) the density of sell limit orders
at price p, placed by agent i. In other words, for any p > 0,

Ui(p) =

∫ p

0
ui(s) ds =

[
total amount of asset offered
for sale at price ≤ p by agent i

]
. (1)

We consider two types of agents. “Small agents” own a very small amount of assets, compared to the total
amount of asset on sale, therefore a single agent cannot influence the probability of execution of the sell orders
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of the other agents. On the other hand, a “large agent” can significantly influence the probability of execution
of the limit orders placed by other competing agents.

Our main goal is to study the existence, uniqueness and stability of a Nash equilibrium, where each agent follows
his best strategy, in reply to the actions of all other agents. We seek to describe the optimal strategies for the
various agents and estimate their expected payoffs.

We consider several market models where different types of agents interact. The Nash equilibrium is determined
as the asymptotic limit for t → ∞ of the solution to a system of conservation laws with nonlocal flux:

ui,t + Fi (p, u1, . . . , um, U)p = 0, i = 1, . . . ,m,

where U(p) =
m∑
i=1

Ui(p), and ui and Ui are as in (1).

Joint work with: Alberto Bressan (The Pennsylvania State University), Giuseppe Maria Coclite (Università degli Studi

di Bari)
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Bryan’s effect and nonlinear damping

Temple H Fay
Department of Mathematics and Statistics, Tshwane University of Technology, South Africa

thfay@hotmail.com

Modern vibratory gyroscopes [1] are designed using the fact that when a near-perfectly manufactured vibrating
structure is subjected to a rotation in three-dimensional space (referred to as inertial rotation), the vibrating
pattern rotates (within the structure) at a rate proportional to the inertial angular rate. This effect, known as
“Bryan’s effect”, was first observed by G.H. Bryan in 1890 [2]. For the constant of proportionality, Bryan made
the following calculation for a body consisting of a ring or cylinder

BF =
Rate of rotation of the vibrating pattern

Inertial rate of rotation of the vibrating structure

for various modes of vibration. This constant of proportionality BF has come to be known as ”Bryan’s factor”.
In 2011 a slowly rotating, fluid-filled sphere undergoing light anisotropic viscously damped vibrations was
considered by Joubert, Shatalov and Coetzee [3]. Some structures have particles that vibrate at a high frequency
and hence particle velocity is expected to be high at various points in time and consequently, a viscous damping
model for Bryan’s effect might not be ideal. Indeed, Sir Isaac Newton stated in Principia: Vol. 1: The Motion
of Bodies (1687), that viscous damping ”is more a mathematical hypothesis than a physical one.” In this paper
we tentatively introduce nonlinear damping into the equations of motion of a vibrating, slowly rotating ring or
shell and show that the rate of rotation of the vibrating pattern is affected strongly by such damping.
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Joint work with: Stephan V. Joubert (Department of Mathematics and Statistics, Tshwane University of Technology,

South Africa)
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Optimal control of level set dynamics via a finite-dimensional approximation
scheme

Mauro Gaggero
ISSIA-National Research Council of Italy, Via De Marini 6, 16149 Genova, Italy

mauro.gaggero@ge.issia.cnr.it

Optimal control of systems that describe the dynamics of level sets is investigated by using a methodology
for approximate feedback control design. The design of the proposed regulators is achieved by resorting to an
approximation scheme based on the extended Ritz method [1]. Such a scheme, which we first investigated in
[2] and [3], consists in constraining the manipulable terms of the model equation to take on a fixed structure,
where a finite number of free parameters can be suitably chosen. The original infinite-dimensional optimization
problem is then reduced to a mathematical nonlinear programming one, in which the parameters have to be
optimized. The proposed methodology is general since it allows one to deal with problems with different types of
control (distributed or boundary control, control in the coefficients) within the same approximation framework.

In [2] and [3], we successfully applied the above-described method to a distributed optimal control problem
for the Burgers’ equation. As another application of the proposed approach, we present here an example based
on the normal flow equation. The goal is to control the velocity term of the equation in order to track a desired
closed curve on R2 associated with the zero level set of the solution of the normal flow equation. The exact
solution of such a problem is very difficult to find, and thus the need of searching for approximate solutions
arises. The velocity term is then replaced by a parametrized control law that depends on the values of the
zero level set of the unknown function, thus turning out to be a feedback control law. The parametrization
is based on radial basis functions with variable centers and widths. By substituting such a structure into the
model equation and cost functional to minimize (given by the integral squared difference between the reference
and actual zero level sets), we obtain a nonlinear programming problem, which is solved by using a sequential
quadratic programming algorithm. At each iteration of such an algorithm we have to numerically solve the
model equation. Simulation results are presented to show the effectiveness of the proposed approach as to both
accuracy of suboptimal solutions and required computational effort.
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Compressible modeling of a cloudy atmosphere using a general pressure evolution
equation

Michael Jaehn
Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany

jaehn@tropos.de

An accurate formulation of a pressure evolution equation that is valid for cloud processes and rainfall is presented
by using an approach of Fedkiw and Osher. This equation is coupled with a conservative prognostic total energy
equation. Although the description of dissipative heating and moist processes will yield higher complexity, it
is a desired criterion to ensure global energy conservation, because simulation results can differ significantly if
traditional prognostic equations are used (e.g. dry potential temperature). For numerical reasons, it could be
more effective to use an additional pressure tendency equation than a diagnostic relation, where pressure has
to be a function of the thermodynamical variable and the additional moisture variables. Spatial discretization
is realized by standard finite-volume methods. For the time integration we outline an implicit procedure by
Rosenbrock time integrators and a special adapted split-explicit method. Results of different model setups will
be illustrated by simulating idealized test cases.

Joint work with: Oswald Knoth (Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany)
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An Operator-difference Scheme for Hyperbolic PDEs with Significant First-order
Derivative Term

Mehmet Emir Koksal
Mevlana University, Konya, Turkey

mekoksal@mevlana.edu.tr

An abstract Cauchy problem for hyperbolic equations containing the operator A(t) with significant first-order
derivative term is considered. This operator is unbounded self-adjoint positive linear operator with domain
in an arbitrary Hilbert space. A second-order absolutely stable difference scheme is developed for solving
the problem. The stability estimates for the solution of this difference scheme is presented. To support the
theoretical statements for the solution of this difference scheme, various numerical examples are tested and the
results are compared with other published numerical solutions obtained via a variety of methods. The modified
difference scheme is applied for finding the transient response of a single phase lossy transmission line.

∗ ∗ ∗

The Closest Point Method for Surfaces PDEs and Applications to Thin Film Flow

Thomas A. März
University of Oxford

maerz@maths.ox.ac.uk
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Partial differential equations (PDEs) are essential for modeling and understanding processes in all areas of
science. The specialty of the PDEs considered here is that the differential operators involved are intrinsic to
a curved surface. Such differential operators are used to model for example the flow of thin liquid films on a
curved substrate (e.g., in industrial coating) [2].

The Closest Point Method [1,3] is a set of mathematical principles and associated numerical techniques for
solving partial differential equations (PDEs) posed on surfaces. In this talk we present a calculus on surfaces
based on closest point functions [4]. This calculus then forms the theoretical basis of the Closest Point Method
and we show how to use it to set up a numerical method. Finally, we demonstrate the performance of the
method on the hyperbolic thin film model [2]

∂th+ divS

(
h3

3
∇Sκ

)
= 0

which applies in situations where the mean curvature κ of the substrate is not negligible.
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Wave propagation in discrete heterogeneous media

Aurora Marica
Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain

marica@bcamath.org

In this talk, we describe the propagation properties of the one and two-dimensional wave and transport equations
with variable coefficients semi-discretized in space by finite difference and P1-finite element schemes on non-
uniform meshes obtained as diffeomorphic transformations of uniform ones. In particular, we introduce and
give a rigorous meaning to notions like the principal symbol of the discrete wave operator or the corresponding
bi-characteristic rays. The main mathematical tool we employ is the discrete Wigner transform, which, in
the limit as the mesh size parameter tends to zero, yields a measure propagating along curves which are
solutions of a Hamiltonian system. Of course, due to dispersion phenomena, the high frequency dynamics does
not coincide with the continuous one. Our analysis holds for C1,1(Rd)-coefficients and C2,1(Rd)-diffeomorphic
transformations defining the grid. We also present several numerical simulations that confirm the predicted paths
of the space-time projections of the bi-characteristic rays. Based on the theoretical analysis and simulations, we
describe some of the pathological phenomena that these rays might exhibit as, for example, their reflection before
touching the boundary of the space domain. This leads, in particular, to the failure of the classical properties
of boundary observability of continuous waves, arising in control and inverse problems theory.
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Indirect internal stabilization of the thermoelastic Bresse system

Nadine Najdi
Beirut Arab University

najdi nadine@hotmail.com

In this work, we study the energy decay rate for a thermoelastic Bresse system. The system consists of three wave
equations and two heat equations coupled in certain pattern. The two wave equations about the longitudinal
displacement and shear angle displacement are effectively damped by the dissipation from the two heat equations,
however. The system is governed by the following differential partial equations:

ρhϕtt −Gh(ϕx + ψ + kω)x − kEh(ωx − kϕ) = 0, (1)

ρIψtt − EIψxx +Gh(ϕx + ψ + kω) + αξx = 0, (2)

ρhωtt − Eh(ωx − kϕ)x + kGh(ϕx + ψ + kω) + αθx = 0, (3)

ρcθt − θxx + αT0ωtx = 0, (4)

ρcξt − ξxx + αT0ψtx = 0, (5)

where ϕ, ψ, ω are the vertical, rotation angle and longitudinal displacements; θ and ξ are the temperature
deviations from the reference temperature T0 along the longitudinal and vertical directions; E, G, ρ, I, h, k, c,
are positive constants for the elastic and thermal material properties. The notation ut (respectively ux) indicate
the partial derivatives with respect to time t ≥ 0 (respectively with respect to spatial location x ∈ [0, L]). In this
thesis, we study the energy decay rate for the thermoelastic Bresse system (1)-(5) with the boundary conditions

ωx(t, x) = ϕ(t, x) = ψx(t, x) = θ(t, x) = ξ(t, x) = 0, for x = 0, L, (6)

or

ω(t, x) = ϕ(t, x) = ψ(t, x) = θ(t, x) = ξ(t, x) = 0, for x = 0, L, (7)

and initial conditions

ω(0, x) = ω0(x), ωt(0, x) = ω1(x), ψ(0, x) = ψ0(x), ψt(0, x) = ψ1(x),

ϕ(0, x) = ϕ0(x), ϕt(0, x) = ϕ1(x), θ(0, x) = θ0(x), ξ(0, x) = ξ0(x). (8)

There are number of publications concerning the stabilization of the Bresse system [3], [4], [2] and [1]. In partic-
ular, in [3], Liu and Rao studied the stabilization of the Bresse system with two different temperature dissipation
law effective on the equations about the longitudinal displacement and shear angle displacement. Under the
equal speed wave propagation condition, they established an exponential energy decay rate. Otherwise, they
showed that the smooth solution decays polynomially to zero with rates 1

t1/2
or 1

t1/4
provided the boundary

conditions is Dirichlet-Neumann-Neumann or Dirichlet-Dirichlet-Dirichlet type respectively. In [2], Fatori and
Rivera consider the Bresse system with one globally temperature dissipation law effective on the equation about
the shear angle displacement. They established the same exponential energy decay rate in the case of equal
speed wave propagation condition. Otherwise, they showed that the smooth solution decays polynomially to
zero with rates 1

t1/3
.

In this work, we consider the thermoelastic Bresse system damped by two locally internal distributed temper-
ature dissipation laws with Dirichlet-Neumann-Neumann or Dirichlet-Dirichlet-Dirichlet boundary conditions
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type. Under the equal speed wave propagation condition, E = G, we establish the same exponential energy
decay rate for usual initial data. On the contrary, when E 3= G, we first prove the non-exponential decay rate for
the Bresse system with Dirichlet-Neumann-Neumann condition type. Therefore, we establish a new polynomial
energy decay rate of type 1

t for the smooth solution.
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Boundary Controllability of a Hyperbolic PDE with ODE Boundary Conditions
Modeling a One-Dimensional Flow

Gilbert Raras Peralta
Institut für Mathematik und Wissenschaftliches Rechnen

Karl-Franzens-Universität Graz, Heinrichstrasse 36, A-8010 Graz, Austria
gilbert.peralta@edu.uni-graz.at

We study a model that describes the flow of an incompressible fluid in an elastic tube that is connected to two
tanks. The model is based on Euler’s continuity equation and the law of balance of momentum; it is a system
of quasilinear PDEs with nonlinear ODE boundary conditions. The system is linearized about the equilibrium
state and semigroup theoretic proofs of well-posedness and stability of this linear system are sketched. Based
on this model, a boundary control system is considered. Using some perturbation results for discrete spectral
operators and operators in finite-dimensional spaces, it is shown that the normalized eigenvectors of the operator
associated to the system form a Riesz basis of the state space, provided that the viscosity is sufficiently small.
This induces a proof that the system is exactly controllable. Using a generalized Kadec’s one-quarter theorem,
a minimal time of controllability is given for single input controls. The control can be obtained by minimizing
a cost functional with PDE constraints.

Joint work with: Georg Propst (Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität

Graz, Heinrichstrasse 36, A-8010 Graz, Austria)
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Riemann solvers for compressible isothermal Euler equations for two phase flows
with phase transition

Ferdinand Thein
Otto-von-Guericke University Magdeburg

ferdinand.thein@st.ovgu.de

We consider the isothermal Euler equations with phase transition between a liquid and a vapor phase. The mass
transfer is modeled by a kinetic relation. Existence and uniqueness results were proven in [1]. We construct
a Riemann solver to obtain the numerical solution for associated Riemann problems. This solver generalizes
the HLLC solver such that it can take into account mass transfer between the phases. The calculated results
will be compared to the exact solutions. Therefor we will highlight the major difficulties and propose possible
strategies to overcome these problems. A talk held by Maren Hantke will give further insight to this topic,
especially considering the exact solution.
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Analytical Solution of Second-Order Hyperbolic Telegraph Equation by
Homotopy Analysis Method

Amit Tomar
Indian Institute of Technology Roorkee,India

amitmath.14@gmail.com

In this Letter, the homotopy analysis method is applied to obtain the solutions of the initial value problem
of hyperbolic type which is called telegraph equation.This analytic technique is valid for dealing with the
nonlinearity and provides a convenient way of controlling the convergence region and rate of the series solution.
The results obtained by the present method are compared with exact solutions. The results reveal that the
implemented technique is very effective and convenient for solving nonlinear partial differential equations.Some
illustrative examples are presented to show the efficiency of the method.
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13.2 Tuesday, 14.00–16.35, Via Bassi Rooms, first floor

Shallow water equations for horizontal-shear flows: characteristics, analytical and
numerical solutions

Alexander Chesnokov
Lavrentyev Institute of Hydrodynamics

chesnokov@hydro.nsc.ru

The talk focuses on the theoretical analysis of the equations




ut + uux + vuy + ghx = 0, hy = 0,

ht + (uh)x + (vh)y = 0, uY ′
i (x)− v

∣∣
y=Yi

= 0, (i = 1, 2),

describing open channel flows of ideal incompressible fluid with horizontal velocity shear in the long wave
approximation [1]. Here (u, v) is the fluid velocity; h is the free-surface height over the flat bottom z = 0;
y = Y1(x) and y = Y2(x) are the lateral channel walls; and g is the constant gravity acceleration. In the semi-
Lagrangian frame of reference this model transforms to the integrodifferential equations. Theoretical analysis
of the model is based on the proposed by V.M.Teshukov concept of hyperbolicity for systems of equations with
operator coefficients. A distinctive feature of integrodifferential models is the presence of both discrete and
continuous spectrum of characteristic velocities.

Necessary and sufficient conditions of generalized hyperbolicity for the equations of motion are formulated.
An example of verification of the hyperbolicity conditions is given, and an analogy with the well-known stability
criterion for shear flows is noted. Exact (in particular, periodical) solutions of the model are constructed
and interpreted physically for the class of traveling waves. It is shown that traveling waves are stable in
the linear approximation only in the case of an insignificant change in the fluid depth. Differential balance
laws approximating the basic integrodifferential equation are proposed. These equations are used to perform
numerical calculations of the waves propagation.

The concepts of sub- and supercritical flows are introduced for the model describing the steady-state
horizontal-shear shallow flows of an ideal incompressible fluid with a free boundary in a channel of variable
cross-section [2]. Internal structure of flow developed in a local channel contraction or expansion is analyzed.
Continuous and discontinuous exact solutions describing different flow regimes are constructed and their prop-
erties are studied. Analytical solutions for flows with the formation of recirculation zones are obtained.

References

[1] Chesnokov A.A., Liapidevskii V.Yu., Wave motion of an ideal fluid in a narrow open channel, J. App.
Mech. Tech. Phys., 50 (2009), pp. 220–228.

[2] Liapidevskii V.Yu., Chesnokov A.A., Sub- and supercritical horizontal-shear flows in an open channel of
variable cross-section, Fluid Dynamics, 44 (2009), pp. 903–916.

Joint work with: Valery Liapidevskii (Lavrentyev Institute of Hydrodynamics).

Posters



HYP2012 — Book of Abstracts 253

∗ ∗ ∗

Hyperbolic problems in the theory of longitudinal vibrations of non-thin rods

Igor Fedotov
Tshwane University of Technology, Department of Mathematics and Statistics

fedotovi@tut.ac.za

The longitudinal vibration of rods is normally considered in mathematical physics in terms of the classical
model described by the wave equation under assumptions that the rod is thin and relatively long. More general
theories were formulated by taking into consideration the effect of the lateral motion effects of shear stress of
relatively thick rod and was considered by Rayleigh in 1894 and Bishop in 1952. The Rayleigh-Bishop model
is described by a fourth order partial differential equation not containing the fourth time derivative. This
model was generalized by Mindlin and Hermann. They considered the lateral displacement proportional to an
independent function of time and the longitudinal coordinate. This result can be formulated as an equation of
forth order resolved with respect to the highest order time derivative. To obtain more general class of equations,
the displacements of rods are expressed in the form of a power series expansion in the lateral coordinate. We
wish to classify all of the above mentioned equations within the frame of the general theory of hyperbolic
equations (are they strictly hyperbolic, hyperbolic or pseudohyperbolic). The Study of General hyperbolic
equations was launched in 1937 by I.G. Petrovsky in his paper on Cauchy problems where he gave a general
definition of the hyperbolicity. The initial Petrovsky’s results are complete. Further development of the theory
was concerned not with obtaining new profound results but rather with the improvement of methods of proofs
and the application of modern tools such as Distribution Theory. The Monograph of Leray (1952) can be
considered as the next step in this direction. Further substantial progress was made by Garding (1957). In 1938
Petrovsky extended his theory to general systems of partial differential equation not resolved with respect to
the highest time derivative. The interest in such problems returned after S.L. Sobolev’s paper appeared in 1954.
Following Sobolev’s investigations S.A. Galpern (1960 and 1963) considered differential operators not resolved
with respect to highest time-derivative. A detailed survey of such problems can be found in the monograph
of Demidenko and Uspensky. We use the approach on the theory of Hyperbolic equations developed by L.R.
Volevich. and S.G. Gindikin (1967,1996 and 1999). They obtained deep results concerning mixed problems for
general hyperbolic equations. This talk is about a comment on recent findings of I. Fedotov and L.R. Volevich
(2006) which should provide a thorough understanding of the hyperbolic and pseudohyperbolic operator arising
in the theory of longitudinal vibrations of elastic bars. Invertibility of some hyperbolic problems is discussed.

Joint work with: Herve Michel Tenkam (Tshwane University of Technology, Department of Mathematics and Statistics),

Micheal Shatalov (Tshwane University of Technology, Department of Mathematics and Statistics, CSIR, MSM ).

∗ ∗ ∗

Exact Riemann solutions to compressible Euler equations in ducts with
discontinuous cross–section

Ee Han
Otto-von-Guericke-Universität Magdeburg

han.ee@st.ovgu.de

We determine completely the exact Riemann solutions for the system of Euler equations in a duct with discon-
tinuous varying cross–section. The crucial point in solving the Riemann problem for hyperbolic system is the
construction of the wave curves. To address the difficulty in the construction due to the nonstrict hyperbolicity
of the underlying system, we introduce the L–M and R–M curves in the velocity–pressure phase plane. The
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behaviors of the L–M and R–M curves for six basic cases are fully analyzed. We observe that in certain cases
the L–M and R–M curves contain the bifurcation which leads to the non–uniqueness of the Riemann solutions.
The physically relevant solution is singled out among all the possible exact solutions by comparing them with
the numerical results of the axisymmetric Euler equation model.
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Viscous Profiles for Shock Waves
in Isentropic Magnetohydrodynamics

Andreas Klaiber
University of Konstanz

Andreas.Klaiber@uni-konstanz.de

Standing planar waves in isentropic magnetohydrodynamics (IMHD) are governed by the autonomous system

µv′ = mv + p(v) +
1

2
|b|2 − j,

νw′ = mw − ab,

ηb′ = vb− aw −
(
c
0

)
,

(Σ)

of ordinary differential equations in R5, where the usual physical notations have been adopted; the longitudinal
components of momentum m := ρv and magnetic field a are known to be constant. The constants µ − ν > 0,
ν > 0, η > 0 represent the fluid’s longitudinal and transversal viscosity, and electrical resistivity, respectively.
Furthermore, p(v) = p̂(m/v) is derived from a general barotropic pressure law p̂ = p̂(ρ). Only two constants of
integration have to be considered, namely j ∈ (−∞,+∞) and c ∈ [0,+∞).

A heteroclinic orbit connecting two rest points u± of Σ corresponds to a viscous profile for the standing
shock wave with the states u− and u+.

We present results from [3,4] which show that (i) system Σ is gradient-like, (ii) there are up to four isolated
rest points, (iii) heteroclinic orbits between the rest points do or do not exist depending on the respective ratios
of (µ, ν, η). For the proof of (iii) we use the Conley index as in [1] and geometric singular perturbation theory
as in [2].
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Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible
Navier-Stokes equations

Mingjie Li
College of Science, Minzu University of China, Beijing, China.

lmjmath@gmail.com

In this talk, we show the zero dissipation limit to rarefaction wave with vacuum for the compressible Navier-
Stokes equations. It is well-known that one-dimensional compressible heat-conductive gas dynamics has three
elementary waves, i.e., shock wave, contact discontinuity wave and rarefaction wave. Among the three waves,
only the rarefaction wave can be connected to vacuum. Given a rarefaction wave with one-side vacuum state
to the compressible Euler equations, we can construct a sequence of solutions to one-dimensional compressible
Navier-Stokes equations which converge to the above rarefaction wave with vacuum as the viscosity tends to zero.
Moreover, the uniform convergence rate is obtained. The proof consists of a scaling argument and elementary
energy analysis based on the underlying rarefaction wave structures.
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Boundary layer solution to systems of viscous conservation laws in half line

Tohru Nakamura
Faculty of Mathematics, Kyushu University, Japan

tohru@math.kyushu-u.ac.jp
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We consider the large-time behavior of solutions to the symmetric hyperbolic-parabolic system in the half line.
We show the existence and asymptotic stability of the stationary solution (boundary layer solution) under the
smallness assumption on the initial perturbation and the strength of the stationary solution. The key to proof
is to derive the uniform a priori estimates by using Matsumura–Nishida’s energy method under the stability
condition of Shizuta–Kawashima type.

Joint work with: Shinya Nishibata (Tokyo Institute of Technology).
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Large Time Behavior of Solutions for the Navier-Stokes equations for
compressible fluid in three dimension

Se Eun Noh
Department of Mathematics, Myoungji University

senoh@mju.ac.kr

In this talk, we study the pointwise estimate of Green’s function and coupling of nonlinear waves to the isentropic
Navier-Stokes equations for compressible fluid in three dimension. Singular waves in the Green’s function
dominates short time behaviors. The explicit form of leading low frequency waves representing large time
behavior of linearized equations is obtained to analyze nonlinear interactions of dissipation waves and pointwise
estimates of the time-asymptotic behavior of the solutions which shows dissipation and generalized Huygens’
principle.
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On hyperbolic equations describing longitudinal vibration of accreting rods

Michael Y. Shatalov
Department of Mathematics and Statistics, Tshwane University of Technology, Private Bag X680, Pretoria

0001, South Africa, and
Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing, P.O. Box 395, Pretoria

0001, CSIR, South Africa
mshatlov@csir.co.za

Presented by: Igor Fedotov

In this paper we analyse longitudinal vibration of a thin rod which is fixed at the left end and free at the right
end. It is assumed that the rod is growing at its right end, i.e. its length is increasing according to a special law
and hence it is a known function of time. This problem is described it terms of the linear classical, Rayleigh-
Love and Rayleigh-Bishop models. For solution of this problem we make a special change of variables which
transforms the original equations into new non-autonomous equations. It is shown that these equations are
hyperbolic and possess several interesting and important properties. First of all, the amplitudes of vibration of
the rod are growing with time. For example, if the rod length is increasing proportionally to time the amplitudes
are also growing proportionally to time. Secondly, if a particular mode is excited it excites other modes. In this
case the mechanism of the modes excitation is asymmetric, which means that the low frequency modes possess
higher amplitudes compared to the higher frequency modes. A physical explanation of the above mentioned
phenomena is proposed and a simplified model describing these effects is analysed.

Joint work with: Igor A. Fedotov (Department of Mathematics and Statistics, Tshwane University of Technology, Private

BagX680, Pretoria 0001, South Africa).
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Delta-shocks in the Navier-Stockes system of granular hydrodynamics

V. M. Shelkovich
St.-Petersburg State Architecture and Civil Engineering University, Russia

shelkv@yahoo.com

1. Strong singular solutions and physical models. It is well known that there are “nonclassical”
situations where the Cauchy problem for a system of conservation laws admits δ-shocks, which are solutions
whose components contain Dirac delta functions. In contrast to the classical shock wave discontinuities, δ-shocks
carry mass, momentum and energy and are related with transport and concentration processes. In numerous
papers, δ-shocks were studied in the zero-pressure gas dynamics. This system was used to describe the formation
of large-scale structures of the universe, for modeling “dusty” media and double-fluid mixtures of gas and solid
particles. Systems of conservation laws admitting δ-shocks were used for modeling the formation and evolution
of traffic jams, in nonlinear chromatography, in the model of non-classical shallow water flows.

2. δ-Shocks in granular hydrodynamics. Nowadays problems related with granular gases are very
attractive for experimental, numerical, and theoretical investigation (see [1], [2] and the references therein). So
far there is no consensus on the description of these type of media. In contrast to ordinary gases, granular
gases are dilute assemblies of hard spheres which lose energy at collisions. In such gases a local density can
significantly increase while a local pressure can fall drastically. A description of these phenomena is provided
by the Navier-Stockes granular hydrodynamics which is derivable, under certain assumptions, from the basic
theory. In [5], [6] (see also [2; p.60-75]), the following hydrodynamics system of granular gas

ρt +∇ · (ρU) = 0,
(ρU)t +∇ · (ρU ⊗ U + I ρT ) = 0,

Tt +∇ · (UT ) + (γ − 2)T ∇ · U = −ΛρT 3/2,
(1)
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was studied, where I is the identity matrix, ⊗ is the tensor product of vectors, ρ is gas density, U is velocity, T
is temperature, p = ρT is pressure; γ is the adiabatic index (if n = 2 then γ = 2, and if n = 3, then γ = 5/3),
Λ is a constant connected with the energy of collision processes. As was proved in [5], [7], solutions of system
(1) generically lose the initial smoothness within a finite time. Moreover (see [5], [6]), system (1) can admit
a solution which contains δ-function in the density ρ: ρ(x, t) = 2m∗(t)δ(x) + ρ∗(x, t), and m∗(t), ρ∗(x, t) are
smooth.

Here we shall consider some problems connected with δ-shocks in system (1). To deal with δ-shocks, we will
use the weak asymptotics method developed in [3], [4] (see also [8]).

Let Γ =
{
(x, t) : S(x, t) = 0

}
be a hypersurface of codimension 1 in {(x, t) : x ∈ Rn, t ∈ [0,∞)} ⊂ Rn+1,

S ∈ C∞(Rn×[0,∞)), with ∇S(x, t)|S=0 3= 0 for any fixed t. Let Γt = {x ∈ Rn : S(x, t) = 0} be a moving surface
in Rn. Denote by ν = ∇S

|∇S| the unit space normal to the surface Γt pointing from Ω−
t = {x ∈ Rn : S(x, t) < 0}

to Ω+
t = {x ∈ Rn : S(x, t) > 0}. The time component of the normal vector −G = St

|∇S| is the velocity of the

wave front Γt along the space normal ν. For system (1) we consider the δ-shock type initial data

(
U0(x), ρ0(x), T 0(x), x ∈ Rn; U0

δ (x), x ∈ Γ0

)
,

where ρ0(x) = ρ̂0(x) + e0(x)δ(Γ0),
(2)

and U0 ∈ L∞(Rn;Rn), ρ̂0, T 0 ∈ L∞(Rn;R), e0 ∈ C(Γ0), Γ0 = {x : S0(x) = 0} is the initial position of the
δ-shock wave front, U0

δ (x) is the initial velocity of the δ-shock, δ(Γ0) (≡ δ(S0)) is the Dirac delta function on
Γ0.

3. Rankine–Hugoniot conditions. First, basing on [8] we introduce the integral identities, which give a
definition of δ-shock wave type solution of the Cauchy problem (1), (2). This solution is a triple of distributions
(U, ρ, T ) and a hypersurface Γ, where ρ(x, t) is represented as a sum

ρ(x, t) = ρ̂(x, t) + e(x, t)δ(Γ),

U ∈ L∞(Rn × (0,∞);Rn), ρ̂, T ∈ L∞(Rn × (0,∞);R), e ∈ C(Γ), and δ(Γ) (≡ δ(S)) is the Dirac delta
function concentrated on the surface Γ. Next, using the above integral identities and repeating the proof of [8;
Theorem 9.1] almost word for word, we derive the corresponding Rankine–Hugoniot conditions.

4. Mass, momentum, and energy transport laws. Assume that a moving δ-shock wave front Γt =
{x : S(x, t) = 0} permanently separates Rn

x into two parts Ω±
t = {x ∈ Rn : ±S(x, t) > 0}. Let (U, ρ, T )

be compactly supported with respect to x. Denote by M(t) =
∫
Ω−

t ∪Ω+
t
ρ(x, t) dx, m(t) =

∫
Γt

e(x, t) dΓt, and

P (t) =
∫
Ω−

t ∪Ω+
t
ρ(x, t)U(x, t) dx, p(t) =

∫
Γt

e(x, t)Uδ(x, t) dΓt, masses and momenta of the region Ω−
t ∪ Ω+

t and

the moving δ-shock wave front Γt, respectively, where e is a density of the wave front Γt, Uδ = νG = −St∇S
|∇S|2 is

the δ-shock wave velocity. Let Wkin(t) =
∫
Ω−

t ∪Ω+
t
ρ(x, t)|U(x, t)|2/2 dx, wkin(t) =

∫
Γt

e(x, t)|Uδ(x, t)|2/2 dΓt, be

the kinetic energies of the region Ω−
t ∪ Ω+

t and the moving wave front Γt, respectively.
Using technique of the papers [9], [8], we prove the theorem with gives the mass, momentum and energy

balance relations between the area outside of the moving δ-shock wave front and this front, i.e., we derive
connections between quantities M(t) and m(t), P (t) and p(t), Wkin(t) and wkin(t).

5. Propagation of a δ-shock wave. Let S0 be a given smooth function. Denote by Ω±
0 = {x ∈ Rn :

±S0(x) > 0} the domains on the one side and on the other side of the hypersurface Γ0 = {x ∈ Rn : S0(x) = 0}.
In order to study the propagation of a singular front Γt starting from the initial position Γ0, we need to solve
the Cauchy problem for system (1) with the following initial data

(U0, ρ0, T 0, U0
δ ), where U0 = U0+ + [U0]H(−Γ0),

ρ0 = ρ0+ + [ρ0]H(−Γ0) + e0(x)δ(Γ0),
T 0 = T 0+ + [T 0]H(−Γ0),

(3)

where U0−(x) = U0+(x) + [U0(x)], ρ0−(x) = ρ0+(x) + [ρ0(x)], T 0−(x) = T 0+(x) + [T 0(x)]; e0, ρ0±, T 0± are
given functions, U0± are given vectors; H(−Γ0) (≡ H(−S0)) is the Heaviside function. Since in the direction ν
the characteristic equation of system (1) has repeated eigenvalues λ = U · ν, we assume that for the initial data

(2) the geometric entropy condition holds: U0+(x) · ν0|Γ0 < U0
δ (x) · ν0|Γ0 < U0−(x) · ν0|Γ0 , where ν0 = ∇S0(x)

|∇S0(x)|
is the unit normal of Γ0, U0

δ is the initial velocity of the δ-shock.
Using the weak asymptotics method we describe the propagation of δ-shock wave, i.e., we construct a solution

of the Cauchy problem (1), (3).
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Critical thresholds on pressure-less Navier-Stokes equations with nonlocal viscocity

Changhui Tan
University of Maryland
ctan@cscamm.umd.edu

The global existence of strong solutions for Navier-Stokes equations is one of the most challenged problems
in the study of partial differential equations. In this talk, we discuss about the pressure-less compressible
Navier-Stokes equations with regularized nonlocal viscosity

{
ρt +∇ · (ρu) = 0,

ut + u ·∇u =
∫
Rn φ(x− y)(u(y, t)− u(x, t))ρ(y, t)dy,

where the kernel φ is bounded and Lipschitz. The system is related to the hydrodynamic discription of the
Cucker-Smale flocking model. Taking advantage of the non-locality of the viscosity, we establish critical thresh-
olds for the initial profiles, which guarantee existence of global strong solutions for the system.
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Decay property for symmetric hyperbolic systems
with non-symmetric relaxation

Yoshihiro Ueda
Kobe University, JAPAN

ueda@maritime.kobe-u.ac.jp

In this talk, we consider the Cauchy problem for the first-order linear symmetric hyperbolic system of equations
with relaxation:

A0ut +
n∑

j=1

Ajuxj + Lu = 0 (1)

with u|t=0 = u0. Here u = u(t, x) ∈ Rm over t > 0, x ∈ Rn is an unknown function, u0 = u0(x) ∈ Rm over
x ∈ Rn is a given function, and Aj (j = 0, 1, · · · , n) and L are m × m real constant matrices, where integers
m ≥ 1, n ≥ 1 denote dimensions. Throughout this talk, it is assumed that all Aj (j = 0, 1, · · · , n) are symmetric,
A0 is positive definite and L is nonnegative definite with a nontrivial kernel. Notice that L is not necessarily
symmetric. For this general linear degenerately dissipative system it is interesting to study its decay structure
under additional conditions on the coefficient matrices and further investigate the corresponding time-decay
property of solutions to the Cauchy problem.

When the degenerate relaxation matrix L is symmetric, Umeda-Kawashima-Shizuta [5] proved the large-time
asymptotic stability of solutions for a class of equations of hyperbolic-parabolic type with applications to both
electro-magneto-fluid dynamics and magnetohydrodynamics. The key idea in [5] and the later generalized work
[2] that first introduced the so-called Kawashima-Shizuta condition is to design the compensating matrix to
capture the dissipation of systems over the degenerate kernel space of L. The typical feature of the time-decay
property of solutions established in those work is that the high frequency part decays exponentially while the
low frequency part decays polynomially with the rate of the heat kernel.

Unfortunately, when the degenerate relaxation matrix L is not symmetric, the theorems derived in [2,5] can
not be applied any longer. In fact, this is the case for some concrete systems, for example, the Timoshenko
system [1] and the Euler-Maxwell system [3,4], where the linearized relaxation matrix L indeed has a nonzero
skew-symmetric part while it was still proved that solutions decay in time in some different way. Therefore,
our purpose of this talk is to formulate some new structural conditions in order to extend the previous works
to the general system (1) when L is not symmetric, which can include both the Timoshenko system and the
Euler-Maxwell system.
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Hyperbolic differential-operator equations with the time differentiation in
boundary conditions

Yakov Yakubov
Tel-Aviv University, Israel
yakubov@post.tau.ac.il

We give an abstract interpretation in Hilbert spaces of such initial boundary value problems for hyperbolic
equations that a part of boundary conditions may contain the differentiation on the time of the same (second)
order as the equation. The well-posedness of these abstract problems in appropriate abstract functional spaces
is proved. Moreover, we expand the unique solution to the series of eigenvectors of the corresponding spectral
problem. Then, we show an application of the abstract results to second order partial (hyperbolic) differential
equations. The latter, in fact, is a generalization of the classical Fourier method of separation of variables to
the case when the boundary conditions may contain the (second order) differentiation on the time.

13.3 Thursday, 14.00–16.15, Via Bassi Rooms, first floor

A finite volume approximation of a 2 Layer system for growth of sandpile based
on schemes for discontinuous flux for hyperbolic conservation laws

Aekta Aggarwal
TIFR Centre for Applicable Mathematics,Bangalore,India

aekta@math.tifrbng.res.in

We propose an explicit finite volume numerical scheme for a system of partial differential equations proposed
in [3], a model for growing sandpiles under a vertical source on a flat bounded table, based on schemes for
discontinuous flux for hyperbolic conservation laws. In such a system, an eikonal equation for the standing layer
of the pile is coupled to an advection equation for the rolling layer. The model in one dimension is given by

vt − (vux)x = −(1− |ux|)v + f, on[0, 1]× (0, T ) (1)

ut = (1− |ux|)v, in[0, 1]× (0, T ) (2)
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with initial condition
u(x, 0) = 0 = v(x, 0)∀x ∈ (0, 1)

and boundary condition
u(0, t) = u(1, t) = 0

where, f is a given poisitive source.
The idea here is to include the source term f in the form of an integral with the flux term,i.e.−(vux)x and

use the idea of well balanced schemes proposed by Mishra [2]. Since the equation (1) is a first order pde with
discontinous coefficient ux(x, t) in space variable,we approximate (1) using the idea of discontinuous flux for
hyperbolic conservation laws proposed by Gowda and Adimurth [1]. Our schemes are monotone and can be
extended to higher dimensions. We prove some basic estimates about the physical properties of the model. We
compare our scheme and the results of the numerical experiments established in 1 and 2 dimension with the
finite difference schemes proposed by Falcone and Vita[4]. Our schemes work for larger CFL.
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Comparison of discontinuous Galerkin and finite difference for NWP

Slavko Brdar
University of Freiburg, Freiburg i. Br., Germany

slavko@mathematik.uni-freiburg.de

We compare operationally used numerical weather prediction (NWP) model COSMO of the German Weather
Service and the university code DUNE for solving benchmark test cases that traditionally appear in the NWP
community. The focus is on the efficiency and effectiveness, analysing advantages and pitfalls of the both codes
with respect to the chosen test suite. The test suite includes the density current [5], the inertia gravity waves
[4] and the linear hydrostatic mountain waves [1]. The governing equations are Euler equations in 2d, to which
we add enough viscosity in order to ensure the grid convergent numerical solution. On the one side, the DUNE
code uses high order conservative discontinuous Galerkin (DG) method for Euler equations without physical
viscosity and the CDG2 method, recently introduced in [2], for viscous Euler equations. The time integration
for DUNE is fully explicit Runge-Kutta scheme up to the third order. The COSMO code, on the other side,
uses finite differences of second order for fast wave and of fifth order for slow waves. The time integration is the
split-explicit scheme according to Klemp and Wilhelmson (1978). For the mountain wave test case we need to
treat transparent boundary conditions. Both codes use sponge layer technique with similar damping functions.
While the optimally expected convergence rate of the other two test cases is attained, the convergence rate for
this case was shown to reduce to the first order.
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Contact algorithms for cell-centered Lagrangian schemes

Guillaume Clair
CEA-DIF

gclair.recherche@gmail.com

We describe fundamental numerical features of multidimensional Riemann solvers for interface problems. In
our sense, an interface can be viewed as a specific mathematical constraint. We illustrate this point of view
in the framework of compressible fluid dynamics, specifically using advanced lagrangian cell-centered schemes
based on a nodal velocity solver. We propose a new formulation of traditional nodal velocity solvers in order to
solve constrained problems which are evidenced near an interface.

An example is the 2D impact of a lagrangian compressible fluid on a wall. At the time of impact, the normal
component to the wall of the fluid velocity must cancel at the interface fluid-wall, constraining the fluid to slide
on the interface. In this example, two different contact constraints (impact + sliding) apply on nodes belonging
to the face that impinges on the wall.

In their actual formulation, traditional nodal velocity solvers are not capable to solve such problem. Most of
them are based on the solving of a linear system to compute nodal velocities, which is inadequate to take into
account constraints. The new multidimensional formulation of the nodal solver is based on a global constrained
minimization procedure. Such procedure enables to incorporate many kind of constraints in the calculation of
the nodal velocities, particularly impact and sliding. 1D and 2D numerical tests illustrate the potentialities of
this new formulation.
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1D hemodynamic simulations
thanks to numerical methods for Shallow Water system

Olivier, Delestre
Laboratoire J.A. Dieudonné & Polytech Nice–Sophia, University of Nice

delestre@unice.fr

We are interested in blood flow simulation with variable elasticity arteries thanks to a one dimensional conser-
vative model (mass and momentum conservations):






∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

1

3
√
πρ

kA3/2

)
=

A√
πρ

(
∂xA0 −
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√
A∂xk

)
− Cf

Q

A
,

where A(x, t) is the cross-section area (A = πR2 with R the radius of the arteria), Q(x, t) = A(x, t)u(x, t) the
discharge, u(t, x) the mean flow velocity, ρ the blood density, k(x) the stiffness of the artery and A0 = k

√
A0

where A0(x) is the cross section at rest.
We present here a well-balance finite volume scheme based on recent developments in shallow water equations

context. We thus get a mass conservative scheme which also preserves the man at ”eternal rest equilibrium”
(i.e. Q = 0). This numerical method is validated on analytical tests.
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Numerical Solution of the Two-Dimensional Advection Equation on Unstructured
Grids with Logarithmic Reconstruction

Katharina Elsen
Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany

katharina.elsen@gmx.net
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There are numerous approaches for solving hyperbolic differential equations in context of finite volume methods.
One popular approach is the limiter free Local-Double-Logarithmic-Reconstruction (LDLR) of Artebrant and
Schroll. The aim of this work is to construct a two-dimensional reconstructing function based on the LDLR for
solving the advection equation on unstructured grids. The new method should preserve the characteristics of
the LDLR. That means in particular a reconstruction without use of limiters and with a small stencil of only
the nearest neighbors of a particular cell. Also local extrema should be conserved while the local variation of
the reconstruction within one cell should be under control.

We propose an ansatz which works on unstructured polygonal grids. To come up to this, an ansatz function
with one logarithmic expression for each edge of the polygon is constructed. Required gradients at cell edge
midpoints are determined by use of the Multi-Point-Flux-Approximation (MPFA) method. Further derivative
information are obtained with help of special barycentric coordinates. All necessary integrals of the ansatz
functions can be computed exactly. The new advection procedure is numerically evaluated with standard test
cases from the literature on different unstructured quadrilateral grids.

Joint work with: Oswald Knoth (Leibniz-Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany)
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An entropy-satisfying fast and slow waves splitting method for the Baer &
Nunziato two-phase flow model

Jean-Marc Hérard
EDF R&D, Département MFEE, FRANCE.

jean-marc.herard@edf.fr

In the present work, we consider a PDE model formulated in Eulerian coordinates where balance equations
account for the evolution of mass, momentum and energy of each phase. For compressible one-dimensional
flows, there are seven unknowns that describe the evolution of the two-phase flow: the velocities of each phase
uk (where k ∈ {1, 2}), the phasic densities ρk, the total energy of each phase Ek and finally the phase fractions
αk (knowing that α1 + α2 = 1). The model, which was first introduced by Baer & Nunziato in [1], reads






∂tα1 + u2∂xα1 = 0,
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,
∂t(α1ρ1u1) + ∂x(α1ρ1u2

1 + α1p1)− p1∂xα1 = 0,
∂t(α1ρ1E1) + ∂x(α1ρ1E1u1 + α1p1u1)− p1u2∂xα1 = 0,
∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,
∂t(α2ρ2u2) + ∂x(α2ρ2u2

2 + α2p2)− p1∂xα2 = 0,
∂t(α2ρ2E2) + ∂x(α2ρ2E2u2 + α2p2u2)− p1u2∂xα2 = 0.

(1)

The phasic total energies are given by Ek = ek(ρk, pk) +
u2
k

2
, k ∈ {1, 2}, where ek(ρk, pk) is the internal energy

of phase k, assuming some equation of state.

In this work, we propose a fractional step method for computing approximate solutions of the Baer-Nunziato
two-phase flow model. The scheme relies on an operator splitting method corresponding to a separate treatment
of fast propagation phenomena due to the acoustic waves on the one hand, and slow propagation phenomena
due to the fluid motion on the other. For each step of the splitting method, we provide a very simple and robust
numerical treatment.

In addition to the preservation of positive values of the statistical phase fractions and densities, the scheme
is proved to satisfy a numerical entropy inequality. We also provide some test-cases that assess the convergence
of the method.
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The numerical determination of Bryan’s factor for a non-thin cylindrical shell

Stephan V. Joubert
Tshwane University of Technology

joubertsv@tut.ac.za

When a vibrating structure is rotated, the vibrating pattern within the structure rotates at a rate proportional to
the rate of rotation of the structure. This effect, observed in 1890 by G.H. Bryan [1], is utilised in the vibratory
gyroscopes that navigate space shuttles, submarines and commercial jetliners. In a recent articles [2] and [3],
expressions were derived for calculating Bryan’s factor and vibration frequency in terms of eigenfunctions. These
eigenfunctions were analytically derived using Helmholtz potential functions in [2]. In this paper we numerically
determine these eigenfunctions for the first few circumferential numbers as well as numerical values for Bryan’s
factor and the eigenfrequency of vibration of a not necessarily thin cylindrical shell. The numerical routine
used here is more robust than ”thin shell” theory. Despite this robustness, the routine is easy enough for senior
undergraduate students to understand and implement. Analytical solutions to the hyperbolic problems that
arise from generalisations of the classical model of vibrating non-thin rods (such as the Midlin-Herrmann model
(see [4])) are rare. This routine provides approximate solutions to a number of these models.
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Relaxing the CFL Number of the Discontinuous Galerkin Method

Lilia Krivodonova
University of Waterloo, CANADA

lgk@math.uwaterloo.ca
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Discontinuous Galerkin methods (DGM) have a Courant-Friedrichs-Lewy (CFL) number decreasing with the
increase of the order of approximation p for convection dominated problems. This makes them computationally
more expensive when compared with finite volume or finite difference methods. We propose a modification of the
scheme that results in a family of high order methods which have a less restrictive CFL number. We show that
in the standard DG method the dispersion and dissipation errors and the spectrum of the semi-discrete scheme
are related to the [p/p+1] Pade approximation of exp(z) and exp(−z). This Pade approximant is responsible for
both the superconvergent error in diffusion and dispersion (O(h2p+2) and O(h2p+3), respectively) and the small
CFL number. We propose to modify the DGM so that the resulting rational approximation of the exponent
corresponds to a spatial discretization operator with a smaller spectrum, i.e. a less restrictive CFL number.
This is achieved by scaling the amount of the numerical flux contribution to the equations evolving solution
coefficients in time. For the considered orders of approximation, the improvement in the CFL number ranges
between two and five fold depending on how much modification is brought into the scheme. The interesting
aspect of the new schemes is that the (p+1)st rate of convergence in the L2 norm as well as the compact stencil
of the traditional DGM are preserved. We show that for the same amount of work the new schemes are more
efficient for smooth problems and considerably more accurate for problems with discontinuities.
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IMplicit-EXplicit (IMEX) schemes for 10-Moment Plasma Equations

Harish Kumar
BACCHUS, INRIA Bordeaux, France

harish.kumar@inria.fr

10-moment plasma equations are a generalized form of the ideal MHD equations in which the electrons and
ions are considered separately and modeled using 10-moment flow equations. In addition to discretization of
flux terms, a major difficulty in the design of efficient numerical algorithms for these equations is the presence
of stiff source terms, particularly for realistic charge to mass ratios. In this work, we design implicit-explicit
(IMEX) Runge-Kutta (RK) time stepping schemes for these equations. The numerical flux is treated explicitly
with strong stability preserving (SSP)-RK methods and the stiff source term is treated implicitly using implicit
Runge-Kutta methods. The special structure of the equations enable us to split the source terms carefully and
ensure that only local (in each cell) equations need to be solved at each time step. Furthermore the resulting
algebraic system of equations is solved exactly. Benchmark numerical experiments are presented to illustrate
the efficiency of this approach.

∗ ∗ ∗
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Shock waves in quasi-thermal-incompressible materials

Andrea Mentrelli
Department of Mathematics &

Research Centre of Applied Mathematics (CIRAM),
University of Bologna (Italy)
andrea.mentrelli@unibo.it

Incompressibility is a useful idealization for materials characterized by an extreme resistance to volume
changes. For pure mechanical problems, i.e. where no change in temperature is involved, an incompressible
material is easily understood as a material whose density is constant; in this case the solutions of model equations
for incompressible fluids are obtainable as the limit case of the corresponding models involving compressible
fluids [1].

For thermomechanical problems, i.e. when the processes are not isothermal, the definition itself of incom-
pressibility is not straightforward and several models have been proposed. The first model of incompressibility
was characterized by the independence of all the constitutive equations on the pressure [2], which leads to the
conclusion – in strike contrast with experimental evidence – that the density must be constant [3]. A second,
less restrictive, model requires that the only constitutive function independent of the pressure is the specific
volume [4]. Such a definition of incompressibility allows to avoid the problems raised by Müller’s definition but
it is still not satisfactory as in this model instabilities affect wave propagation: since the chemical potential is
not concave, the sound velocity might become imaginary, therefore losing the hyperbolicity of the system of
Euler equations.

In order to solve these inconveniences, a new model of incompressibility has recently been proposed by
Ruggeri & Gouin [5]. According to this model, a material is called quasi-thermal-incompressible (QTI) if the
specific volume, V , and the specific internal energy, ε, differ to order δ2 from functions depending only on the
temperature T :

V (p, T ) = V0 + δW (T )− δ2U (p, T ) , ε (p, T ) = e (T )− δTW ′ (T ) +O
(
δ2
)
,

where δ is a small dimensionless parameter, V0 is a constant, W (T ), U (p, T ) and e (T ) are constiutive functions
chosen in agreement with thermodynamics restrictions. It is remarkable that QTI materials are compressible
fluids that approximate incompressible fluids to order δ2 in the sense of Müller’s definition.

The purpose of the present work is to analyze wave propagation, in particular shock waves, is QTI materials.
The limit case with δ → 0 (corresponding to incompressible materials) is going to be investigated as well.
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Pures et Appliquées 77, 585–627 (1998)

[2] I. Müller, Thermodynamics, Pitman, London (1985)

[3] H. Gouin, A. Muracchini, T. Ruggeri, On the Müller paradox for thermal-incompressible media, Contin-
uum Mech. Thermodyn., DOI: 10.1007/s00161-011-0201-1 (2012), in press

[4] K. R. Rajagopal, M. Ruzika, A. R. Srinivasa, On the Oberbeck-Boussinesq approximations, Mathematical
models and methods in applied sciences 6, 1157–1167 (1996)

[5] H. Gouin, T. Ruggeri, A consistent thermodynamical model of incompressible media as limit case of quasi-
thermal-incompressible materials, Internat. J. Non-Linear Mech., DOI:10.1016/j.ijnonlinmec.2011.11.005
(2012), in press

Joint work with: Tommaso Ruggeri (Department of Mathematics & Research Centre of Applied Mathematics (CIRAM),

University of Bologna).

Posters



HYP2012 — Book of Abstracts 269

∗ ∗ ∗

Numerical scheme for a viscous Shallow Water system including new friction laws
of second order

Ulrich Razafison
Université de Franche-Comté, Laboratoire de Mathématiques de Besançon, CNRS UMR 6623

ulrich.razafison@univ-fcomte.fr

Consider a 1D viscous Shallow Water model
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where h is the flow depth, u the flow velocity, Z topography variations, g the gravity acceleration, µ the viscosity
of the fluid.
In (1), the novelty lives in the friction term Sf . A new model of second order friction term based on Darcy-
Weisbach’s or Manning’s formula is proposed. It can be written into the form

Sf = − kh−α|u|u
(1 + k

3µ |u|h1−α)2
. (2)

If α = 0 or α = 1
3 , then a Darcy-Weisbach type formula or a Manning type formula is obtained respectively.

The derivation of (1)–(2) originating from the free surface Navier-Stokes equations follows the same lines as
in [1] and [3]. The key point is to prescribe at the bottom, stresses with a Darcy-Weisbach’s or a Manning’s
formula.
In order to solve numerically system (1), a scheme based on finite volume method for hyperbolic system of
conservation laws with source terms is suggested.
Following the same lines of [2], analytic solutions for (1)–(2) are proposed. These solutions provide a numerical
validation of the scheme.
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The paper is concerned with a multi-point boundary value problem system. we prove the existence of many
positive solutions for

{
(φp(u′))′ + q1(t)f(t, u, v) = 0 t ∈ (0, 1)
(φp(v′))′ + q2(t)g(t, u, v) = 0

{
u(0) =

∑n
i=1 αiu(ξi) , u(1) =

∑n
i=1 αiu(ηi)

v(0) =
∑n

i=1 βiv(ξi) , v(1) =
∑n

i=1 βiv(ηi)

By using the fixed-point theorem of cone, we provide sufficient conditions under which the above system has
positive solution.
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Figure 1: Evolution of density distribution for shock interacting with helium cylinder, left: experimental results
of Haas & Sturtevant [2], right: current numerical results, at t = 32µs, 52µs, 62µs and 72µs.
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